18 resultados para Operations Management systems
Resumo:
The importance of checking the normality assumption in most statistical procedures especially parametric tests cannot be over emphasized as the validity of the inferences drawn from such procedures usually depend on the validity of this assumption. Numerous methods have been proposed by different authors over the years, some popular and frequently used, others, not so much. This study addresses the performance of eighteen of the available tests for different sample sizes, significance levels, and for a number of symmetric and asymmetric distributions by conducting a Monte-Carlo simulation. The results showed that considerable power is not achieved for symmetric distributions when sample size is less than one hundred and for such distributions, the kurtosis test is most powerful provided the distribution is leptokurtic or platykurtic. The Shapiro-Wilk test remains the most powerful test for asymmetric distributions. We conclude that different tests are suitable under different characteristics of alternative distributions.
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
In an overcapacity world, where the customers can choose from many similar products to satisfy their needs, enterprises are looking for new approaches and tools that can help them not only to maintain, but also to increase their competitive edge. Innovation, flexibility, quality, and service excellence are required to, at the very least, survive the on-going transition that industry is experiencing from mass production to mass customization. In order to help these enterprises, this research develops a Supply Chain Capability Maturity Model named S(CM)2. The Supply Chain Capability Maturity Model is intended to model, analyze, and improve the supply chain management operations of an enterprise. The Supply Chain Capability Maturity Model provides a clear roadmap for enterprise improvement, covering multiple views and abstraction levels of the supply chain, and provides tools to aid the firm in making improvements. The principal research tool applied is the Delphi method, which systematically gathered the knowledge and experience of eighty eight experts in Mexico. The model is validated using a case study and interviews with experts in supply chain management. The resulting contribution is a holistic model of the supply chain integrating multiple perspectives, and providing a systematic procedure for the improvement of a company’s supply chain operations.