18 resultados para Numerical approximation and analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced organic sulfur (ROS) compounds are environmentally ubiquitous and play an important role in sulfur cycling as well as in biogeochemical cycles of toxic metals, in particular mercury. Development of effective methods for analysis of ROS in environmental samples and investigations on the interactions of ROS with mercury are critical for understanding the role of ROS in mercury cycling, yet both of which are poorly studied. Covalent affinity chromatography-based methods were attempted for analysis of ROS in environmental water samples. A method was developed for analysis of environmental thiols, by preconcentration using affinity covalent chromatographic column or solid phase extraction, followed by releasing of thiols from the thiopropyl sepharose gel using TCEP and analysis using HPLC-UV or HPLC-FL. Under the optimized conditions, the detection limits of the method using HPLC-FL detection were 0.45 and 0.36 nM for Cys and GSH, respectively. Our results suggest that covalent affinity methods are efficient for thiol enrichment and interference elimination, demonstrating their promising applications in developing a sensitive, reliable, and useful technique for thiol analysis in environmental water samples. The dissolution of mercury sulfide (HgS) in the presence of ROS and dissolved organic matter (DOM) was investigated, by quantifying the effects of ROS on HgS dissolution and determining the speciation of the mercury released from ROS-induced HgS dissolution. It was observed that the presence of small ROS (e.g., Cys and GSH) and large molecule DOM, in particular at high concentrations, could significantly enhance the dissolution of HgS. The dissolved Hg during HgS dissolution determined using the conventional 0.22 μm cutoff method could include colloidal Hg (e.g., HgS colloids) and truly dissolved Hg (e.g., Hg-ROS complexes). A centrifugal filtration method (with 3 kDa MWCO) was employed to characterize the speciation and reactivity of the Hg released during ROS-enhanced HgS dissolution. The presence of small ROS could produce a considerable fraction (about 40% of total mercury in the solution) of truly dissolved mercury (< 3 kDa), probably due to the formation of Hg-Cys or Hg-GSH complexes. The truly dissolved Hg formed during GSH- or Cys-enhanced HgS dissolution was directly reducible (100% for GSH and 40% for Cys) by stannous chloride, demonstrating its potential role in Hg transformation and bioaccumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In their dialogue - An Analysis of Stock Market Performance: The Dow Jones Industrial Average and the Three Top Performing Lodging Firms 1982 – 1988 - by N. H. Ringstrom, Professor and Elisa S. Moncarz, Associate Professor, School of Hospitality Management at Florida International University, Professors Ringstrom and Moncarz state at the outset: “An interesting comparison can be made between the Dow Jones lndustrial Average and the three top performing, publicly held lodging firms which had $100 million or more in annual lodging revenues. The authors provide that analytical comparison with Prime Motor Inns Inc., the Marriott Corporation, and Hilton Hotels Corporation.” “Based on a criterion of size, only those with $100 million in annual lodging revenues or more resulted in the inclusion of the following six major hotel firms: Prime Motor Inns, Inc., Marriott Corporation, Hilton Hotels Corporation, Ramada Inc., Holiday Corporation and La Quinta Motor Inns, Inc.,” say Professors Ringstrom and Moncarz in framing this discussion with its underpinnings in the years 1982 to 1988. The article looks at each company’s fiscal and Dow Jones performance for the years in question, and presents a detailed analysis of said performance. Graphic analysis is included. It helps to have a fairly vigorous knowledge of stock market and fiscal examination criteria to digest this material. The Ringstrom and Moncarz analysis of Prime Motor Inns Incorporated occupies the first 7 pages of this article in and of itself. Marriot Corporation also occupies a prominent position in this discussion. “Marriott, a giant in the hospitality industry, is huge and continuing to grow. Its 1987 sales were more than $6.5 billion, and its employees numbered over 200,000 individuals, which place Marriott among the 10 largest private employers in the country,” Ringstrom and Moncarz parse Marriott’s influence as a significant financial player. “The firm has a fantastic history of growth over the past 60 years, starting in May 1927 with a nine-seat A & W Root Beer stand in Washington, D.C.,” offer the authors in initialing Marriot’s portion of the discussion with a brief history lesson. The Marriot firm was officially incorporated as Hot Shoppes Inc. in 1929. As the thesis statement for the discussion suggests the performance of these huge, hospitality giants is compared and contrasted directly to the Dow Jones Industrial Average performance. Reasons and empirical data are offered by the authors to explain the distinctions. It would be difficult to explain those distinctions without delving deeply into corporate financial history and the authors willingly do so in an effort to help you understand the growth, as well as some of the setbacks of these hospitality based juggernauts. Ringstrom and Moncarz conclude the article with an extensive overview and analysis of the Hilton Hotels Corporation performance for the period outlined. It may well be the most fiscally dynamic of the firms presented for your perusal. “It is interesting to note that Hilton Hotels Corporation maintained a very strong financial position with relatively little debt during the years 1982-1988…the highest among all companies in the study,” the authors paint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.