20 resultados para Multi-Criteria Decision Aid (MCDA)
Resumo:
Diabetes self-management, an essential component of diabetes care, includes weight control practices and requires guidance from providers. Minorities are likely to have less access to quality health care than White non-Hispanics (WNH) (American College of Physicians-American Society of Internal Medicine, 2000). Medical advice received and understood may differ by race/ethnicity as a consequence of the patient-provider communication process; and, may affect diabetes self-management. ^ This study examined the relationships among participants’ report of: (1) medical advice given; (2) diabetes self-management, and; (3) health outcomes for Mexican-Americans (MA) and Black non-Hispanics (BNH) as compared to WNH (reference group) using data available through the National Health and Nutrition Examination Survey (NHANES) for the years 2007–2008. This study was a secondary, single point analysis. Approximately 30 datasets were merged; and, the quality and integrity was assured by analysis of frequency, range and quartiles. The subjects were extracted based on the following inclusion criteria: belonging to either the MA, BNH or WNH categories; 21 years or older; responded yes to being diagnosed with diabetes. A final sample size of 654 adults [MA (131); BNH (223); WNH (300)] was used for the analyses. The findings revealed significant statistical differences in medical advice reported given. BNH [OR = 1.83 (1.16, 2.88), p = 0.013] were more likely than WNH to report being told to reduce fat or calories. Similarly, BNH [OR = 2.84 (1.45, 5.59), p = 0.005] were more likely than WNH to report that they were told to increase their physical activity. Mexican-Americans were less likely to self-monitor their blood glucose than WNH [OR = 2.70 (1.66, 4.38), p<0.001]. There were differences among ethnicities for reporting receiving recent diabetes education. Black, non-Hispanics were twice as likely to report receiving diabetes education than WNH [OR = 2.29 (1.36, 3.85), p = 0.004]. Medical advice reported given and ethnicity/race, together, predicted several health outcomes. Having recent diabetes education increased the likelihood of performing several diabetes self-management behaviors, independent of race. ^ These findings indicate a need for patient-provider communication and care to be assessed for effectiveness and, the importance of ongoing diabetes education for persons with diabetes.^
Resumo:
Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.
Resumo:
The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household’s evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household’s optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.
Resumo:
The Internet has become an integral part of our nation's critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a 'distance metric'. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.
Resumo:
In human society, people encounter various deontic conflicts every day. Deontic decisions are those that include moral, ethical, and normative aspects. Here, the concern is with deontic conflicts: decisions where all the alternatives lead to the violation of some norms. People think critically about these kinds of decisions. But, just ‘what’ they think about is not always clear. People use certain estimating factors/criteria to balance the tradeoffs when they encounter deontic conflicts. It is unclear what subjective factors people use to make a deontic decision. An elicitation approach called the Open Factor Conjoint System is proposed, which applies an online elicitation methodology which is a combination of two well-know research methodologies: repertory grid and conjoint analysis. This new methodology is extended to be a web based application. It seeks to elicit additional relevant (subjective) factors from people, which affect deontic decisions. The relative importance and utility values are used for the development of a decision model to predict people’s decisions. Fundamentally, this methodology was developed and intended to be applicable for a wide range of elicitation applications with minimal experimenter bias. Comparing with the traditional method, this online survey method reduces the limitation of time and space in data collection and this methodology can be applied in many fields. Two possible applications were addressed: robotic vehicles and the choice of medical treatment. In addition, this method can be applied to many research related disciplines in cross-cultural research due to its online ability with global capacity.