33 resultados para Models performance
Resumo:
Personality has long been linked to performance. Evolutions in this relationship have brought forward new questions regarding the true nature of how personality impacts performance. Both direct and indirect relationships have been proven significant. This study further investigated potential indirect relationships by including a mediating variable, mental model formation, in the personality-performance relationship. Undergraduate students were assessed in a 6-week period, Time 1 - Time 2 experiment. Conceptualizations of personality included measures of the Big 5 model and Self-efficacy, with performance measured by content quiz and overall course scores. Findings showed that the Big 5 personality traits, extraversion and agreeableness, positively and significantly impacted commonality with the instructor's mental model. However, commonality with the instructor's mental model did not impact performance. In comparison, commonality with an expert mental model positively and significantly impacted performance for both the content quiz and overall course score. Furthermore, similarity with an expert mental model positively and significantly impacted overall course performance. Hypothesized full mediation of mental model formation for the personality-performance relationship was not supported due to a lack of direct effect relationships required for mediation. However, a revised conceptualization of results emerged. Findings from the current study point to the novel and unique role mental models play in the personality-performance relationship. While personality traits do impact mental model formation, accuracy in the mental models formed is critical to performance.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency's safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
Recently, researchers have begun to investigate the benefits of cross-training teams. It has been hypothesized that cross-training should help improve team processes and team performance (Cannon-Bowers, Salas, Blickensderfer, & Bowers, 1998; Travillian, Volpe, Cannon-Bowers, & Salas, 1993). The current study extends previous research by examining different methods of cross-training (positional clarification and positional modeling) and the impact they have on team process and performance in both more complex and less complex environments. One hundred and thirty-five psychology undergraduates were placed in 45 three-person teams. Participants were randomly assigned to roles within teams. Teams were asked to “fly” a series of missions on a PC-based helicopter flight simulation. ^ Results suggest that cross-training improves team mental model accuracy and similarity. Accuracy of team mental models was found to be a predictor of coordination quality, but similarity of team mental models was not. Neither similarity nor accuracy of team mental models was found to be a predictor of backup behavior (quality and quantity). As expected, both team coordination (quality) and backup behaviors (quantity and quality) were significant predictors of overall team performance. Contrary to expectations, there was no interaction between cross-training and environmental complexity. Results from this study further cross-training research by establishing positional clarification and positional modeling as training strategies for improving team performance. ^
Resumo:
Compact thermal-fluid systems are found in many industries from aerospace to microelectronics where a combination of small size, light weight, and high surface area to volume ratio fluid networks are necessary. These devices are typically designed with fluid networks consisting of many small parallel channels that effectively pack a large amount of heat transfer surface area in a very small volume but do so at the cost of increased pumping power requirements. ^ To offset this cost the use of a branching fluid network for the distribution of coolant within a heat sink is investigated. The goal of the branch design technique is to minimize the entropy generation associated with the combination of viscous dissipation and convection heat transfer experienced by the coolant in the heat sink while maintaining compact high heat transfer surface area to volume ratios. ^ The derivation of Murray's Law, originally developed to predict the geometry of physiological transport systems, is extended to heat sink designs which minimze entropy generation. Two heat sink designs at different scales are built, and tested experimentally and analytically. The first uses this new derivation of Murray's Law. The second uses a combination of Murray's Law and Constructal Theory. The results of the experiments were used to verify the analytical and numerical models. These models were then used to compare the performance of the heat sink with other compact high performance heat sink designs. The results showed that the techniques used to design branching fluid networks significantly improves the performance of active heat sinks. The design experience gained was then used to develop a set of geometric relations which optimize the heat transfer to pumping power ratio of a single cooling channel element. Each element can be connected together using a set of derived geometric guidelines which govern branch diameters and angles. The methodology can be used to design branching fluid networks which can fit any geometry. ^
Resumo:
The purpose of this study was threefold: first, to investigate variables associated with learning, and performance as measured by the National Council Licensure Examination for Registered Nurses (NCLEX-RN). The second purpose was to validate the predictive value of the Assessment Technologies Institute (ATI) achievement exit exam, and lastly, to provide a model that could be used to predict performance on the NCLEX-RN, with implications for admission and curriculum development. The study was based on school learning theory, which implies that acquisition in school learning is a function of aptitude (pre-admission measures), opportunity to learn, and quality of instruction (program measures). Data utilized were from 298 graduates of an associate degree nursing program in the Southeastern United States. Of the 298 graduates, 142 were Hispanic, 87 were Black, non-Hispanic, 54 White, non-Hispanic, and 15 reported as Others. The graduates took the NCLEX-RN for the first time during the years 2003–2005. This study was a predictive, correlational design that relied upon retrospective data. Point biserial correlations, and chi-square analyses were used to investigate relationships between 19 selected predictor variables and the dichotomous criterion variable, NCLEX-RN. The correlation and chi square findings indicated that men did better on the NCLEX-RN than women; Blacks had the highest failure rates, followed by Hispanics; older students were more likely to pass the exam than younger students; and students who passed the exam started and completed the nursing program with a higher grade point average, than those who failed the exam. Using logistic regression, five statistical models that used variables associated with learning and student performance on the NCLEX-RN were tested with a model adapted from Bloom's (1976) and Carroll's (1963) school learning theories. The derived model included: NCLEX-RNsuccess = f (Nurse Entrance Test and advanced medical-surgical nursing course grade achieved). The model demonstrates that student performance on the NCLEX-RN can be predicted by one pre-admission measure, and a program measure. The Assessment Technologies Institute achievement exit exam (an outcome measure) had no predictive value for student performance on the NCLEX-RN. The model developed accurately predicted 94% of the student's successful performance on the NCLEX-RN.
Resumo:
Career Academy instructors' technical literacy is vital to the academic success of students. This nonexperimental ex post facto study examined the relationships between the level of technical literacy of instructors in career academies and student academic performance. It was also undertaken to explore the relationship between the pedagogical training of instructors and the academic performance of students. ^ Out of a heterogeneous population of 564 teachers in six targeted schools, 136 teachers (26.0 %) responded to an online survey. The survey was designed to gather demographic and teaching experience data. Each demographic item was linked by researchers to teachers' technology use in the classroom. Student achievement was measured by student learning gains as assessed by the reading section of the FCAT from the previous to the present school year. ^ Linear and hierarchical regressions were conducted to examine the research questions. To clarify the possibility of teacher gender and teacher race/ethnic group differences by research variable, a series of one-way ANOVAs were conducted. As revealed by the ANOVA results, there were not statistically significant group differences in any of the research variables by teacher gender or teacher race/ethnicity. Greater student learning gains were associated with greater teacher technical expertise integrating computers and technology into the classroom, even after controlling for teacher attitude towards computers. Neither teacher attitude toward technology integration nor years of experience in integrating computers into the curriculum significantly predicted student learning gains in the regression models. ^ Implications for HRD theory, research, and practice suggest that identifying teacher levels of technical literacy may help improve student academic performance by facilitating professional development strategies and new parameters for defining highly qualified instructors with 21st century skills. District professional development programs can benefit by increasing their offerings to include more computer and information communication technology courses. Teacher preparation programs can benefit by including technical literacy as part of their curriculum. State certification requirements could be expanded to include formal surveys to assess teacher use of technology.^
Resumo:
Colleges base their admission decisions on a number of factors to determine which applicants have the potential to succeed. This study utilized data for students that graduated from Florida International University between 2006 and 2012. Two models were developed (one using SAT as the principal explanatory variable and the other using ACT as the principal explanatory variable) to predict college success, measured using the student’s college grade point average at graduation. Some of the other factors that were used to make these predictions were high school performance, socioeconomic status, major, gender, and ethnicity. The model using ACT had a higher R^2 but the model using SAT had a lower mean square error. African Americans had a significantly lower college grade point average than graduates of other ethnicities. Females had a significantly higher college grade point average than males.
Resumo:
To stay competitive, many employers are looking for creative and innovative employees to add value to their organization. However, current models of job performance overlook creative performance as an important criterion to measure in the workplace. The purpose of this dissertation is to conduct two separate but related studies on creative performance that aim to provide support that creative performance should be included in models of job performance, and ultimately included in performance evaluations in organizations. Study 1 is a meta-analysis on the relationship between creative performance and task performance, and the relationship between creative performance and organizational citizenship behavior (OCB). Overall, I found support for a medium to large corrected correlation for both the creative performance-task performance (ρ = .51) and creative performance-OCB (ρ = .49) relationships. Further, I also found that both rating-source and study location were significant moderators. Study 2 is a process model that includes creative performance alongside task performance and OCB as the outcome variables. I test a model in which both individual differences (specifically: conscientiousness, extraversion, proactive personality, and self-efficacy) and job characteristics (autonomy, feedback, and supervisor support) predict creative performance, task performance, and OCB through engagement as a mediator. In a sample of 299 employed individuals, I found that all the individual differences and job characteristics were positively correlated with all three performance criteria. I also looked at these relationships in a multiple regression framework and most of the individual differences and job characteristics still predicted the performance criteria. In the mediation analyses, I found support for engagement as a significant mediator of the individual differences-performance and job characteristics-performance relationships. Taken together, Study 1 and Study 2 support the notion that creative performance should be included in models of job performance. Implications for both researchers and practitioners alike are discussed.
Resumo:
For years, researchers and human resources specialists have been searching for predictors of performance as well as for relevant performance dimensions (Barrick & Mount, 1991; Borman & Motowidlo, 1993; Campbell, 1990; Viswesvaran et al., 1996). In 1993, Borman and Motowidlo provided a framework by which traditional predictors such as cognitive ability and the Big Five personality factors predicted two different facets of performance: 1) task performance and 2) contextual performance. A meta-analysis was conducted to assess the validity of this model as well as that of other modified models. The relationships between predictors such as cognitive ability and personality variables and the two outcome variables were assessed. It was determined that even though the two facets of performance may be conceptually different, empirically they overlapped substantially (p= .75). Finally, results show that there is some evidence for cognitive ability as a predictor of both task and contextual performance and conscientiousness as a predictor of both task and contextual performance. The possible mediation of predictor-- criterion relationships was also assessed. The relationship between cognitive ability and contextual performance vanished when task performance was controlled.
Resumo:
The Unified Modeling Language (UML) has quickly become the industry standard for object-oriented software development. It is being widely used in organizations and institutions around the world. However, UML is often found to be too complex for novice systems analysts. Although prior research has identified difficulties novice analysts encounter in learning UML, no viable solution has been proposed to address these difficulties. Sequence-diagram modeling, in particular, has largely been overlooked. The sequence diagram models the behavioral aspects of an object-oriented software system in terms of interactions among its building blocks, i.e. objects and classes. It is one of the most commonly-used UML diagrams in practice. However, there has been little research on sequence-diagram modeling. The current literature scarcely provides effective guidelines for developing a sequence diagram. Such guidelines will be greatly beneficial to novice analysts who, unlike experienced systems analysts, do not possess relevant prior experience to easily learn how to develop a sequence diagram. There is the need for an effective sequence-diagram modeling technique for novices. This dissertation reports a research study that identified novice difficulties in modeling a sequence diagram and proposed a technique called CHOP (CHunking, Ordering, Patterning), which was designed to reduce the cognitive load by addressing the cognitive complexity of sequence-diagram modeling. The CHOP technique was evaluated in a controlled experiment against a technique recommended in a well-known textbook, which was found to be representative of approaches provided in many textbooks as well as practitioner literatures. The results indicated that novice analysts were able to perform better using the CHOP technique. This outcome seems have been enabled by pattern-based heuristics provided by the technique. Meanwhile, novice analysts rated the CHOP technique more useful although not significantly easier to use than the control technique. The study established that the CHOP technique is an effective sequence-diagram modeling technique for novice analysts.
Resumo:
As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
Personality has long been linked to performance. Evolutions in this relationship have brought forward new questions regarding the true nature of how personality impacts performance. Both direct and indirect relationships have been proven significant. This study further investigated potential indirect relationships by including a mediating variable, mental model formation, in the personality-performance relationship. Undergraduate students were assessed in a 6-week period, Time 1 - Time 2 experiment. Conceptualizations of personality included measures of the Big 5 model and Self-efficacy, with performance measured by content quiz and overall course scores. Findings showed that the Big 5 personality traits, extraversion and agreeableness, positively and significantly impacted commonality with the instructor’s mental model. However, commonality with the instructor’s mental model did not impact performance. In comparison, commonality with an expert mental model positively and significantly impacted performance for both the content quiz and overall course score. Furthermore, similarity with an expert mental model positively and significantly impacted overall course performance. Hypothesized full mediation of mental model formation for the personality-performance relationship was not supported due to a lack of direct effect relationships required for mediation. However, a revised conceptualization of results emerged. Findings from the current study point to the novel and unique role mental models play in the personality-performance relationship. While personality traits do impact mental model formation, accuracy in the mental models formed is critical to performance.
Resumo:
To stay competitive, many employers are looking for creative and innovative employees to add value to their organization. However, current models of job performance overlook creative performance as an important criterion to measure in the workplace. The purpose of this dissertation is to conduct two separate but related studies on creative performance that aim to provide support that creative performance should be included in models of job performance, and ultimately included in performance evaluations in organizations. Study 1 is a meta-analysis on the relationship between creative performance and task performance, and the relationship between creative performance and organizational citizenship behavior (OCB). Overall, I found support for a medium to large corrected correlation for both the creative performance-task performance (ρ = .51) and creative performance-OCB (ρ = .49) relationships. Further, I also found that both rating-source and study location were significant moderators. Study 2 is a process model that includes creative performance alongside task performance and OCB as the outcome variables. I test a model in which both individual differences (specifically: conscientiousness, extraversion, proactive personality, and self-efficacy) and job characteristics (autonomy, feedback, and supervisor support) predict creative performance, task performance, and OCB through engagement as a mediator. In a sample of 299 employed individuals, I found that all the individual differences and job characteristics were positively correlated with all three performance criteria. I also looked at these relationships in a multiple regression framework and most of the individual differences and job characteristics still predicted the performance criteria. In the mediation analyses, I found support for engagement as a significant mediator of the individual differences-performance and job characteristics-performance relationships. Taken together, Study 1 and Study 2 support the notion that creative performance should be included in models of job performance. Implications for both researchers and practitioners alike are discussed.^
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.