20 resultados para Internal marker and nutrient
Resumo:
Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^
Resumo:
The subtropical hardwood forests of southern Florida are formed by 120 frost-sensitive, broadleaved angiosperm species that range throughout the Caribbean. Previous work on a series of small sized forest component patches of a 20 km2, forest preserve in northern Key Largo indicate that a shift in species composition was associated with a 100 year forest developmental sequence, and this shift was associated with an increasingly evergreen canopy. This document investigates the underlying differences of the biology of trees that live in this habitat, and is specifically focused on the impact of leaf morphology on changing nutrient cycling patterns. Measurements of the area, thickness, dry mass, nutrient content and longevity of several leaves from 3-4 individuals of ten species were conducted in combination with a two-year leaf litter collection and nutrient analysis to determine that species with thicker, denser leaves cycled scarce nutrients up to 2-3 times more efficiently than thin leaved tree species, and the leaf thickness/density index predicts role in forest development in a parallel direction as the index predicts nutrient cycling efficiency. A three year set of observations on the relative abundance of new leaves, flowers and fruits of the same tree species provides an opportunity to evaluate the consequences the leaf morphology/nutrient cycling/forest development relationship to forest habitat quality. Results of the three documents support a mechanistic link between forest development and nutrient cycling, and suggests that older forests are likely to be better habitats based on the availability of valuable forest products like new leaves, flowers, and fruits throughout the year.
Resumo:
We address the relative importance of nutrient availability in relation to other physical and biological factors in determining plant community assemblages around Everglades Tree Islands (Everglades National Park, Florida, USA). We carried out a one-time survey of elevation, soil, water level and vegetation structure and composition at 138 plots located along transects in three tree islands in the Park’s major drainage basin. We used an RDA variance partitioning technique to assess the relative importance of nutrient availability (soil N and P) and other factors in explaining herb and tree assemblages of tree island tail and surrounded marshes. The upland areas of the tree islands accumulate P and show low N concentration, producing a strong island-wide gradient in soil N:P ratio. While soil N:P ratio plays a significant role in determining herb layer and tree layer community assemblage in tree island tails, nevertheless part of its variance is shared with hydrology. The total species variance explained by the predictors is very low. We define a strong gradient in nutrient availability (soil N:P ratio) closely related to hydrology. Hydrology and nutrient availability are both factors influencing community assemblages around tree islands, nevertheless both seem to be acting together and in a complex mechanism. Future research should be focused on segregating these two factors in order to determine whether nutrient leaching from tree islands is a factor determining community assemblages and local landscape pattern in the Everglades, and how this process might be affected by water management.
Resumo:
Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.
Resumo:
Tree islands in the Everglades wetlands are centers of biodiversity and targets of restoration, yet little is known about the pattern of water source utilization by the constituent woody plant communities: upland hammocks and flooded swamp forests. Two potential water sources exist: (1) entrapped rainwater in the vadose zone of the organic soil (referred to as upland soil water), that becomes enriched in phosphorus, and (2) phosphorus-poor groundwater/surface water (referred to as regional water). Using natural stable isotope abundance as a tracer, we observed that hammock plants used upland soil water in the wet season and shifted to regional water uptake in the dry season, while swamp forest plants used regional water throughout the year. Consistent with the previously observed phosphorus concentrations of the two water sources, hammock plants had a greater annual mean foliar phosphorus concentration over swamp forest plants, thereby supporting the idea that tree island hammocks are islands of high phosphorus concentrations in the oligotrophic Everglades. Foliar nitrogen levels in swamp forest plants were higher than those of hammock plants. Linking water sources with foliar nutrient concentrations can indicate nutrient sources and periods of nutrient uptake, thereby linking hydrology with the nutrient regimes of different plant communities in wetland ecosystems. Our results are consistent with the hypotheses that (1) over long periods, upland tree island communities incrementally increase their nutrient concentration by incorporating marsh nutrients through transpiration seasonally, and (2) small differences in micro-topography in a wetland ecosystem can lead to large differences in water and nutrient cycles.