17 resultados para Information technology -- Study and teaching -- TFC
Resumo:
The purpose of this study is to identify the relationship between the characteristics of distance education students, their computer literacy and technology acceptance and distance education course satisfaction. The theoretical framework for this study will apply Rogers and Havelock's Innovation, Diffusion & Utilization theories to distance education. It is hypothesized that technology acceptance and computer competency will influence the student course satisfaction and explain the decision to adopt or reject distance education curriculum and technology. Distance education delivery, Institutional Support, Convenience, Interactivity and five distance education technologies were studied. The data were collected by a survey questionnaire sent to four Florida universities. Three hundred and nineteen and students returned the questionnaire. A factor and regression analysis on three measure of satisfaction revealed significant difference between the three main factors related to the overall satisfaction of distance education students and their adoption of distance education technology as medium of learning. Computer literacy is significantly related to greater overall student satisfaction. However, when competing with other factors such as delivery, support, interactivity, and convenience, computer literacy is not significant. Results indicate that age and status are the only two student characteristics to be significant. Distance education technology acceptance is positively related to higher overall satisfaction. Innovativeness is also positively related to student overall satisfaction. Finally, the technology used relates positively to greater satisfaction levels within the educational experience. Additional research questions were investigated and provided insights into the innovation decision process.
Resumo:
For the past several years, U.S. colleges and universities have faced increased pressure to improve retention and graduation rates. At the same time, educational institutions have placed a greater emphasis on the importance of enrolling more students in STEM (science, technology, engineering and mathematics) programs and producing more STEM graduates. The resulting problem faced by educators involves finding new ways to support the success of STEM majors, regardless of their pre-college academic preparation. The purpose of my research study involved utilizing first-year STEM majors’ math SAT scores, unweighted high school GPA, math placement test scores, and the highest level of math taken in high school to develop models for predicting those who were likely to pass their first math and science courses. In doing so, the study aimed to provide a strategy to address the challenge of improving the passing rates of those first-year students attempting STEM-related courses. The study sample included 1018 first-year STEM majors who had entered the same large, public, urban, Hispanic-serving, research university in the Southeastern U.S. between 2010 and 2012. The research design involved the use of hierarchical logistic regression to determine the significance of utilizing the four independent variables to develop models for predicting success in math and science. The resulting data indicated that the overall model of predictors (which included all four predictor variables) was statistically significant for predicting those students who passed their first math course and for predicting those students who passed their first science course. Individually, all four predictor variables were found to be statistically significant for predicting those who had passed math, with the unweighted high school GPA and the highest math taken in high school accounting for the largest amount of unique variance. Those two variables also improved the regression model’s percentage of correctly predicting that dependent variable. The only variable that was found to be statistically significant for predicting those who had passed science was the students’ unweighted high school GPA. Overall, the results of my study have been offered as my contribution to the literature on predicting first-year student success, especially within the STEM disciplines.