20 resultados para Evaluating and Selecting a Property Management System
Resumo:
Background Diabetes has reached epidemic proportions in the United States, particularly among minorities, and if improperly managed can lead to medical complications and death. Healthcare providers play vital roles in communicating standards of care, which include guidance on diabetes self-management. The background of the client may play a role in the patient-provider communication process. The aim of this study was to determine the association between medical advice and diabetes self care management behaviors for a nationally representative sample of adults with diabetes. Moreover, we sought to establish whether or not race/ethnicity was a modifier for reported medical advice received and diabetes self-management behaviors. Methods We analyzed data from 654 adults aged 21 years and over with diagnosed diabetes [130 Mexican-Americans; 224 Black non-Hispanics; and, 300 White non-Hispanics] and an additional 161 with 'undiagnosed diabetes' [N = 815(171 MA, 281 BNH and 364 WNH)] who participated in the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Logistic regression models were used to evaluate whether medical advice to engage in particular self-management behaviors (reduce fat or calories, increase physical activity or exercise, and control or lose weight) predicted actually engaging in the particular behavior and whether the impact of medical advice on engaging in the behavior differed by race/ethnicity. Additional analyses examined whether these relationships were maintained when other factors potentially related to engaging in diabetes self management such as participants' diabetes education, sociodemographics and physical characteristics were controlled. Sample weights were used to account for the complex sample design. Results Although medical advice to the patient is considered a standard of care for diabetes, approximately one-third of the sample reported not receiving dietary, weight management, or physical activity self-management advice. Participants who reported being given medical advice for each specific diabetes self-management behaviors were 4-8 times more likely to report performing the corresponding behaviors, independent of race. These results supported the ecological model with certain caveats. Conclusions Providing standard medical advice appears to lead to diabetes self-management behaviors as reported by adults across the United States. Moreover, it does not appear that race/ethnicity influenced reporting performance of the standard diabetes self-management behavior. Longitudinal studies evaluating patient-provider communication, medical advice and diabetes self-management behaviors are needed to clarify our findings.
Resumo:
Background: Diabetes has reached epidemic proportions in the United States, particularly among minorities, and if improperly managed can lead to medical complications and death. Healthcare providers play vital roles in communicating standards of care, which include guidance on diabetes self-management. The background of the client may play a role in the patient-provider communication process. The aim of this study was to determine the association between medical advice and diabetes self care management behaviors for a nationally representative sample of adults with diabetes. Moreover, we sought to establish whether or not race/ethnicity was a modifier for reported medical advice received and diabetes self-management behaviors. Methods: We analyzed data from 654 adults aged 21 years and over with diagnosed diabetes [130 MexicanAmericans; 224 Black non-Hispanics; and, 300 White non-Hispanics] and an additional 161 with ‘undiagnosed diabetes’ [N = 815(171 MA, 281 BNH and 364 WNH)] who participated in the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Logistic regression models were used to evaluate whether medical advice to engage in particular self-management behaviors (reduce fat or calories, increase physical activity or exercise, and control or lose weight) predicted actually engaging in the particular behavior and whether the impact of medical advice on engaging in the behavior differed by race/ethnicity. Additional analyses examined whether these relationships were maintained when other factors potentially related to engaging in diabetes self management such as participants’ diabetes education, sociodemographics and physical characteristics were controlled. Sample weights were used to account for the complex sample design. Results: Although medical advice to the patient is considered a standard of care for diabetes, approximately onethird of the sample reported not receiving dietary, weight management, or physical activity self-management advice. Participants who reported being given medical advice for each specific diabetes self-management behaviors were 4-8 times more likely to report performing the corresponding behaviors, independent of race. These results supported the ecological model with certain caveats. Conclusions: Providing standard medical advice appears to lead to diabetes self-management behaviors as reported by adults across the United States. Moreover, it does not appear that race/ethnicity influenced reporting performance of the standard diabetes self-management behavior. Longitudinal studies evaluating patient-provider communication, medical advice and diabetes self-management behaviors are needed to clarify our findings.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^
Resumo:
With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.