18 resultados para Empirical Mode Decomposition, vibration-based analysis, damage detection, signal decomposition
Resumo:
The objective of this research is to develop nanoscale ultrasensitive transducers for detection of biological species at molecular level using carbon nanotubes as nanoelectrodes. Rapid detection of ultra low concentration or even single DNA molecules are essential for medical diagnosis and treatment, pharmaceutical applications, gene sequencing as well as forensic analysis. Here the use of functionalized single walled carbon nanotubes (SWNT) as nanoscale detection platform for rapid detection of single DNA molecules is demonstrated. The detection principle is based on obtaining electrical signal from a single amine terminated DNA molecule which is covalently bridged between two ends of an SWNT separated by a nanoscale gap. The synthesis, fabrication, chemical functionalization of nanoelectrodes and DNA attachment were optimized to perform reliable electrical characterization these molecules. Using this detection system fundamental study on charge transport in DNA molecule of both genomic and non genomic sequences is performed. We measured an electrical signal of about 30 pA through a hybridized DNA molecule of 80 base pair in length which encodes a portion of sequence of H5N1 gene of avian Influenza A virus. Due the dynamic nature of the DNA molecules the local environment such as ion concentration, pH and temperature significantly influence its physical properties. We observed a decrease in DNA conductance of about 33% in high vacuum conditions. The counterion variation was analyzed by changing the buffer from sodium acetate to tris(hydroxymethyl) aminomethane, which resulted in a two orders of magnitude increase in the conductivity of the DNA. The fabrication of large array of identical SWNT nanoelectrodes was achieved by using ultralong SWNTs. Using these nanoelectrode array we have investigated the sequence dependent charge transport in DNA. A systematic study performed on PolyG - PolyC sequence with varying number of intervening PolyA - PolyT pairs showed a decrease in electrical signal from 180 pA (PolyG - PolyC) to 30 pA with increasing number of the PolyA - PolyT pairs. This work also led to the development of ultrasensitive nanoelectrodes based on enzyme functionalized vertically aligned high density multiwalled CNTs for electrochemical detection of cholesterol. The nanoelectrodes exhibited selectively detection of cholesterol in the presence of common interferents found in human blood.
Resumo:
Financial innovations have emerged globally to close the gap between the rising global demand for infrastructures and the availability of financing sources offered by traditional financing mechanisms such as fuel taxation, tax-exempt bonds, and federal and state funds. The key to sustainable innovative financing mechanisms is effective policymaking. This paper discusses the theoretical framework of a research study whose objective is to structurally and systemically assess financial innovations in global infrastructures. The research aims to create analysis frameworks, taxonomies and constructs, and simulation models pertaining to the dynamics of the innovation process to be used in policy analysis. Structural assessment of innovative financing focuses on the typologies and loci of innovations and evaluates the performance of different types of innovative financing mechanisms. Systemic analysis of innovative financing explores the determinants of the innovation process using the System of Innovation approach. The final deliverables of the research include propositions pertaining to the constituents of System of Innovation for infrastructure finance which include the players, institutions, activities, and networks. These static constructs are used to develop a hybrid Agent-Based/System Dynamics simulation model to derive propositions regarding the emergent dynamics of the system. The initial outcomes of the research study are presented in this paper and include: (a) an archetype for mapping innovative financing mechanisms, (b) a System of Systems-based analysis framework to identify the dimensions of Systems of Innovation analyses, and (c) initial observations regarding the players, institutions, activities, and networks of the System of Innovation in the context of the U.S. transportation infrastructure financing.
Resumo:
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or "dirty" sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.