42 resultados para Coastal Ecosystems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seagrass meadows in Florida Bay and Shark Bay, contain substantial stores of both organic carbon and nutrients. Soils from both systems are predominantly calcium carbonate, with an average of 82.1% CaCO3 in Florida Bay compared to 71.3% in Shark Bay. Soils from Shark Bay had, on average, 21% higher organic carbon content and 35% higher phosphorus content than Florida Bay. Further, soils from Shark Bay had lower mean dry bulk density (0.78 ± 0.01 g mL-1) than those from Florida Bay (0.84 ± 0.02 mg mL-1). The most hypersaline regions of both bays had higher organic carbon content in surficial soils. Profiles of organic carbon and phosphorus from Florida Bay indicate that this system has experienced an increase in P delivery and primary productivity over the last century; in contrast, decreasing organic carbon and phosphorus with depth in the soil profiles in Shark Bay point to a decrease in phosphorus delivery and primary productivity over the last 1000 y. The total ecosystem stocks of stored organic C in Florida Bay averages 163.5 MgCorg ha-1, lower than the average of 243.0 MgCorg ha-1 for Shark Bay; but these values place Shark and Florida Bays among the global hotspots for organic C storage in coastal ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whereas many land predators disappeared before their ecological roles were studied, the decline of marine apex predators is still unfolding. Large sharks in particular have experienced rapid declines over the last decades. In this study, we review the documented changes in exploited elasmobranch communities in coastal, demersal, and pelagic habitats, and synthesize the effects of sharks on their prey and wider communities. We show that the high natural diversity and abundance of sharks is vulnerable to even light fishing pressure. The decline of large predatory sharks reduces natural mortality in a range of prey, contributing to changes in abundance, distribution, and behaviour of small elasmobranchs, marine mammals, and sea turtles that have few other predators. Through direct predation and behavioural modifications, top-down effects of sharks have led to cascading changes in some coastal ecosystems. In demersal and pelagic communities, there is increasing evidence of mesopredator release, but cascading effects are more hypothetical. Here, fishing pressure on mesopredators may mask or even reverse some ecosystem effects. In conclusion, large sharks can exert strong top-down forces with the potential to shape marine communities over large spatial and temporal scales. Yet more empirical evidence is needed to test the generality of these effects throughout the ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Caribbean Sea and its watersheds show signs of environmental degradation. These fragile coastal ecosystems are susceptible to environmental impacts, in part because of their oligotrophic conditions and their critical support of economic development. Tourism is one of the major sources of income in the Caribbean, making the region one of the most ecotourism dependent in the world. Yet there are few explicit, long-term, comprehensive studies describing the structure and function of Caribbean ecosystems. We propose a conceptual framework using the environmental signature hypothesis of tropical coastal settings to develop a series of research questions for the reef–sea-grass–wetland seascape. We applied this approach across 13 sites throughout the region, including ecosystems in a variety of coastal settings with different vulnerabilities to environmental impacts. This approach follows the strategy developed by the Long Term Ecological Research program of the National Science Foundation to establish ecological research questions best studied over decades and large spatial areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Globally, human populations are increasing and coastal ecosystems are becoming increasingly impacted by anthropogenic stressors. As eutrophication and exploitation of coastal resources increases, primary producer response to these drivers becomes a key indicator of ecosystem stability. Despite the importance of monitoring primary producers such as seagrasses and macroalgae, detailed studies on the response of these benthic habitat components to drivers remain relatively sparse. Utilizing a multi-faceted examination of turtle-seagrass and sea urchin-macroalgae consumer and nutrient dynamics, I elucidate the impact of these drivers in Akumal, Quintana Roo, Mexico. In Yal Ku Lagoon, macroalgae bioindicators signified high nutrient availability, which is important for further studies, but did not consistently follow published trends reflecting decreased δ 15N content with distance from suspected source. In Akumal Bay, eutrophication and grazing by turtles and fishes combine to structure patches within the seagrass beds. Grazed seagrass patches had higher structural complexity and productivity than patches continually grazed by turtles and fishes. Results from this study indicate that patch abandonment may follow giving-up density theory, the first to be recorded in the marine environment. As Diadema antillarum populations recover after their massive mortality thirty years ago, the role these echinoids will have in reducing macroalgae cover and altering ecosystem state remains to be clear. Although Diadema antillarum densities within the coral reef ecosystem were comparable to other regions within the Caribbean, the echinoid population in Akumal Bay was an insufficient driver to prevent dominance of a turf-algal-sediment (TAS) state. After a four year study, declining coral cover coupled with increased algal cover suggests that the TAS-dominated state is likely to persist over time despite echinoid recovery. Studies on macroalgal diversity and nutrients within this same region of echinoids indicated diversity and nutrient content of macroalgae increased, which may further increase the persistence of the algal-dominated state. This study provides valuable insight into the variable effects of herbivores and nutrients on primary producers within a tropical coastal ecosystem. Results from this work challenge many of the currently accepted theories on primary producer response to nutrients and herbivory while providing a framework for further studies into these dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reactivity of higher plant derived 3-oxy-triterpenoids to sunlight was investigated using a series of pure reference standards both under simulated and real solar exposure. The majority of the exposed compounds showed reactivity to light, particularly to simulated sunlight and among others generated seco-derivatives. While photochemical processes have been suggested for the formation of such compounds, their abundances in some sediments have often been assumed to be the result of diagenetic reworking of parent triterpenoids. Analyses of mangrove leaf waxes, an important known source of taraxerol in coastal ecosystems, showed the presence of the 3,4-seco-derivative dihydrolacunosic acid, which could represent an important biotic source for des-A-triterpenoid precursors to such sediments, and is unrelated to aquatic organic matter diagenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing a framework for assessing interactions between multiple anthropogenic stressors remains an important goal in environmental research. In coastal ecosystems, the relative effects of aspects of global climate change (e.g. CO2 concentrations) and localized stressors (e.g. eutrophication), in combination, have received limited attention. Using a long-term (11 month) field experiment, we examine how epiphyte assemblages in a tropical seagrass meadow respond to factorial manipulations of dissolved carbon dioxide (CO2(aq)) and nutrient enrichment. In situ CO2(aq) manipulations were conducted using clear, open-top chambers, which replicated carbonate parameter forecasts for the year 2100. Nutrient enrichment consisted of monthly additions of slow-release fertilizer, nitrogen (N) and phosphorus (P), to the sediments at rates equivalent to theoretical maximum rates of anthropogenic loading within the region (1.54 g N m−2 d−1 and 0.24 g P m−2 d−1). Epiphyte community structure was assessed on a seasonal basis and revealed declines in the abundance of coralline algae, along with increases in filamentous algae under elevated CO2(aq). Surprisingly, nutrient enrichment had no effect on epiphyte community structure or overall epiphyte loading. Interactions between CO2(aq) and nutrient enrichment were not detected. Furthermore, CO2(aq)-mediated responses in the epiphyte community displayed strong seasonality, suggesting that climate change studies in variable environments should be conducted over extended time-scales. Synthesis. The observed responses indicate that for certain locations, global stressors such as ocean acidification may take precedence over local eutrophication in altering the community structure of seagrass epiphyte assemblages. Given that nutrient-driven algal overgrowth is commonly cited as a widespread cause of seagrass decline, our findings highlight that alternate climate change forces may exert proximate control over epiphyte community structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coastal environments can be highly susceptible to environmental changes caused by anthropogenic pressures and natural events. Both anthropogenic and natural perturbations may directly affect the amount and the quality of water flowing through the ecosystem, both in the surface and subsurface and can subsequently, alter ecological communities and functions. The Florida Everglades and the Sian Ka'an Biosphere Reserve (Mexico) are two large ecosystems with an extensive coastal mangrove ecotone that represent a historically altered and pristine environment, respectively. Rising sea levels, climate change, increased water demand, and salt water intrusion are growing concerns in these regions and underlies the need for a better understanding of the present conditions. The goal of my research was to better understand various ecohydrological, environmental, and hydrogeochemical interactions and relationships in carbonate mangrove wetlands. A combination of aqueous geochemical analyses and visible and near-infrared reflectance data were employed to explore relationships between surface and subsurface water chemistry and spectral biophysical stress in mangroves. Optical satellite imagery and field collected meteorological data were used to estimate surface energy and evapotranspiration and measure variability associated with hurricanes and restoration efforts. Furthermore, major ionic and nutrient concentrations, and stable isotopes of hydrogen and oxygen were used to distinguish water sources and infer coastal groundwater discharge by applying the data to a combined principal component analysis-end member mixing model. Spectral reflectance measured at the field and satellite scales were successfully used to estimate surface and subsurface water chemistry and model chloride concentrations along the southern Everglades. Satellite imagery indicated that mangrove sites that have less tidal flushing and hydrogeomorphic heterogeneity tend to have more variable evapotranspiration and soil heat flux in response to storms and restoration. Lastly, water chemistry and multivariate analyses indicated two distinct fresh groundwater sources that discharge to the phosphorus-limited estuaries and bays of the Sian Ka'an Biopshere Reserve; and that coastal groundwater discharge was an important source for phosphorus. The results of the study give us a better understanding of the ecohydrological and hydrogeological processes in carbonate mangrove environments that can be then be extrapolated to similar coastal ecosystems in the Caribbean.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study demonstrates the compositional heterogeneity of a protein-like fluorescence emission signal (T-peak; excitation/emission maximum at 280/325 nm) of dissolved organic matter (DOM) samples collected from subtropical river and estuarine environments. Natural water samples were collected from the Florida Coastal Everglades ecosystem. The samples were ultrafiltered and excitation–emission fluorescence matrices were obtained. The T-peak intensity correlated positively with N concentration of the ultrafiltered DOM solution (UDON), although, the low correlation coefficient (r2=0.140, p<0.05) suggested the coexistence of proteins with other classes of compounds in the T-peak. As such, the T-peak was unbundled on size exclusion chromatography. The elution curves showed that the T-peak was composed of two compounds with distinct molecular weights (MW) with nominal MWs of about >5×104 (T1) and ∼7.6×103 (T2) and with varying relative abundance among samples. The T1-peak intensity correlated strongly with [UDON] (r2=0.516, p<0.001), while T2-peak did not, which suggested that the T-peak is composed of a mixture of compounds with different chemical structures and ecological roles, namely proteinaceous materials and presumably phenolic moieties in humic-like substances. Natural source of the latter may include polyphenols leached from senescent plant materials, which are important precursors of humic substances. This idea is supported by the fact that polyphenols, such as gallic acid, an important constituent of hydrolysable tannins, and condensed tannins extracted from red mangrove (Rhizophora mangle) leaves exhibited the fluorescence peak in the close vicinity of the T-peak (260/346 and 275/313 nm, respectively). Based on this study the application of the T-peak as a proxy for [DON] in natural waters may have limitations in coastal zones with significant terrestrial DOM input.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Southeast Florida’s continual urban expansion will potentially increase anthropogenic pollution in adjacent coastal marine systems. Furthermore, increased nutrient loads could have detrimental effects on the already threatened Florida Reef Tract. The present study uses a stable isotopic approach to determine the sources and the impact of nutrients on the Florida Reef Tract. δ13C and δ15N analysis of macroalgae, sponges, and sediment were analyzed in order to determine nutrient inputs in this region. While δ13C data did not display any significant trends spatially, δ15N values of the majority of biota exhibited a strong East to West gradient with more enriched values close to shore. Relative enrichment in δ15N values were measured for sediments sampled along the Florida Reef Tract in comparison to a pristine Marquesas Keys sediment core. The δ15N data also implies that shoreline anthropogenic nutrients have more nutrient loading implications on reefs than major point sources.