25 resultados para Automatic water level recorder (AWLR)
Resumo:
Taylor Slough, in Everglades National Park, has experienced an evolution of water management infrastructure since drainage activities arrived in South Florida. This has included the excavation of canals, installation of large capacity pump stations, and a variety of operational strategies focused on resolving the conflict between managing the water level for developed areas while providing water supply for Everglades National Park. This study provides a review of water management practices and the concurrent hydrologic conditions in the Taylor Slough basin and adjacent canal system from 1961 through 2010. Analyses of flow, water level and rainfall data were divided into time periods that correspond to significant changes in structural features and operational plans. In the early 1960s, Taylor Slough was disconnected from the greater Everglades system by the construction of levees upstream. As water supply for Taylor Slough became more urgent, the Slough was connected to the regional water supply system via a network of canals and pump stations to relieve over-drained conditions. The increased water supply and pump capacity succeeded in raising water level and increasing flow and hydroperiod in the marsh.
Resumo:
Understanding the relationships between hydrology and salinity and plant community structure and production is critical to allow predictions of wetland responses to altered water management, changing precipitation patterns and rising sea-level. We addressed how salinity, water depth, hydroperiod, canal inflows, and local precipitation control marsh macrophyte aboveground net primary production (ANPP) and structure in the coastal ecotone of the southern Everglades. We contrasted responses in two watersheds - Taylor Slough (TS) and C-111 - systems that have and will continue to experience changes in water management. Based on long-term trajectories in plant responses, we found continued evidence of increasing water levels and length of inundation in the C-111 watershed south of the C-111 canal. We also found strong differentiation among sites in upper TS that was dependent on hydrology. Finally, salinity, local precipitation and freshwater discharge from upstream explained over 80 % of the variance in Cladium ANPP at a brackish water site in TS. Moreover, our study showed that, while highly managed, the TS and C-111 watersheds maintain legacies in spatial pattern that would facilitate hydrologic restoration. Based on the trajectories in Cladium and Eleocharis, shifts in plant community structure could occur within 5–10 years of sustained water management change.
Resumo:
Transpiration-driven nutrient accumulation has been identified as a potential mechanism governing the creation and maintenance of wetland vegetation patterning. This process may contribute to the formation of nutrient-rich tree islands within the expansive oligotrophic marshes of the Everglades (Florida, United States). This study presents hydrogeochemical data indicating that tree root water uptake is a primary driver of groundwater ion accumulation across one of these islands. Sap flow, soil moisture, water level, water chemistry, and rainfall were measured to identify the relationships between climate, transpiration, and groundwater uptake by phreatophytes and to examine the effect this uptake has on groundwater chemistry and mineral formation in three woody plant communities of differing elevations. During the dry season, trees relied more on groundwater for transpiration, which led to a depressed water table and the advective movement of groundwater and dissolved ions, including phosphorus, from the surrounding marsh towards the centre of the island. Ion exclusion during root water uptake led to elevated concentrations of all major dissolved ions in the tree island groundwater compared with the adjacent marsh. Groundwater was predominately supersaturated with respect to aragonite and calcite in the lower-elevation woody communities, indicating the potential for soil formation. Elevated groundwater phosphorous concentrations detected in the highest-elevation woody community were associated with the leaching of inorganic sediments (i.e. hydroxyapatite) in the vadose zone. Understanding the complex feedback mechanisms regulating plant/groundwater/surface water interactions, nutrient dynamics, and potential soil formation is necessary to manage and restore patterned wetlands such as the Everglades.
Resumo:
Tide propagation through coastal wetlands is a complex phenomenon affected by vegetation, channels, and tidal conditions. Generally, tidal flow is studied using stage (water level) observations, which provide good temporal resolution, but they are acquired in limited locations. Here, a remote-sensing technique, wetland InSAR (interferometric synthetic aperture radar), is used to detect tidal flow in vegetated coastal environments over broad spatial scales. The technique is applied to data sets acquired by three radar satellites over the western Everglades in south Florida. Interferometric analysis of the data shows that the greatest water-level changes occur along tidal channels, reflecting a high velocity gradient between fast horizontal flow in the channel and the slow flow propagation through the vegetation. The high-resolution observations indicate that the tidal flushing zone extends 2–3 km on both sides of tidal channels and can extend 3–4 km inland from the end of the channel. The InSAR observations can also serve as quantitative constraints for detailed coastal wetland flow models.
Resumo:
After developing field sampling protocols and making a series of consultations with investigators involved in research in CSSS habitat, we determined that vegetationhydrology interactions within this landscape are best sampled at a combination of scales. At the finer scale, we decided to sample at 100 m intervals along transects that cross the range of habitats present, and at the coarser scale, to conduct an extensive survey of vegetation at sites of known sparrow density dispersed throughout the range of the CSSS. We initiated sampling in the first week of January 2003 and continued it through the last week of May. During this period, we established 6 transects, one in each CSSS subpopulation, completed topographic survey along the Transects A, C, D, and F, and sampled herb and shrub stratum vegetation, soil depth and periphyton along Transects A, and at 179 census points. We also conducted topographic surveys and completed vegetation and soil depth sampling along two of five transects used by ENP researchers for monitoring long-term vegetation change in Taylor Slough. We analyzed the data by summarizing the compositional and structural measures and by using cluster analysis, ordination, weighted averaging regression, and weighted averaging calibration. The mean elevation of transects decreased from north to south, and Transect F had greater variation than other transects. We identified eight vegetation assemblages that can be grouped into two broad categories, ‘wet prairie’ and ‘marsh’. In the 2003 survey, wet prairies were most dominant in the northeastern sub-populations, and had shorter inferred-hydroperiod, higher species richness and shallower soils than marshes, which were common in Subpopulations A, D, and the southernmost regions of Sub-population B. Most of the sites at which birds were observed during 2001 or 2002 had an inferred-hydroperiod of 120-150 days, while no birds were observed at sites with an inferred-hydroperiod less than 120 days or more than 300 days. Management-induced water level changes in Taylor Slought during the 1980’s and 1990’s appeared to elicit parallel changes in vegetation. The results described in detail in the following pages serve as a basis for evaluating and modifying, if necessary, the sampling design and analytical techniques to be used in the next three years of the project.
Resumo:
The major activities in Year 3 on ‘Effect of hydrologic restoration on the habitat of the Cape Sable seaside sparrow (CSSS)’ included presentations, field work, data analysis, and report preparation. During this period, we made 4 presentations, two at the CSSS – fire planning workshops at Everglades National Park (ENP), one at the Society of Wetland Scientists’ meeting in Charleston, SC, and a fourth at the Marl Prairie/CSSS performance measure workshop at ENP. We started field work in the third week of January and continued till June 3, 2005. Early in the field season, we completed vegetation surveys along two transects, B and C (~15.1 km). During April and May, vegetation sampling was completed at 199 census sites, bringing to 608 the total number of CSSS census sites with quantitative vegetation data. We updated data sets from all three years, 2003-05, and analyzed them using cluster analysis and ordination as in previous two years. However, instead of weighted averaging, we used weighted-averaging partial least square regression (WA-PLS) model, as this method is considered an improvement over WA for inferring values of environmental variables from biological species composition. We also validated the predictive power of the WA-PLS regression model by applying it to a sub-set of 100 census sites for which hydroperiods were “known” from two sources, i.e., from elevations calculated from concurrent water depth measurements onsite and at nearby water level recorders, and from USGS digital elevation data. Additionally, we collected biomass samples at 88 census sites, and determined live and dead aboveground plant biomass. Using vegetation structure and biomass data from those sites, we developed a regression model that we used to predict aboveground biomass at all transects and census sites. Finally, biomass data was analyzed in relation to hydroperiod and fire frequency.
Resumo:
In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. ^ As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. ^ Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.^
Resumo:
It is widely believed that wading birds in the Everglades have declined as a result of historic water management practices. I determined growth rates for Snowy Egret (Egretta thula) chicks by assessed the nestling body condition through measurement of body weight and skeletal traits. A growth index was calculated as a residual of body weight regressed on age. A body condition index was calculated as the residual of body weight regressed on a skeletal trait (tarsus). Growth was significantly related to water level and hatch date. Survival rates were calculated to day 14, 21, and 50. Survival to 50 days of age was significantly related to hatch date and order. Survival to 21 days of age was significantly related to water level and hatching order. Survival to 14 days of age was marginally related to hatching order. Growth and survival is greatly influenced by water level and hatch date.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.