222 resultados para phosphorus Everglades


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report examines the interaction between hydrology and vegetation over a 10-year period, between 2001/02 and 2012 within six permanent tree island plots located on three tree islands, two plots each per tree island, established in 2001/02, along a hydrologic and productivity gradient. We hypothesize that: (H1) hydrologic differences within plots between census dates will result in marked differences in a) tree and sapling densities, b) tree basal area, and c) forest structure, i.e., canopy volume and height, and (H2) tree island growth, development, and succession is dependent on hydrologic fluxes, particularly during periods of prolonged droughts or below average hydroperiods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Status and history of the Ridge-Slough Mosaic The Florida Everglades is a large subtropical wetland with diverse hydrologic, edaphic, and vegetative characteristics. Historically, a significant portion of this system was a slow moving river originating from the Kissimmee River floodplain, flowing into the vast but shallow Lake Okeechobee, and draining south-southwest over extensive peatlands into Florida Bay (McVoy 2011). Human-induced alterations to the hydrologic regime, including reduction, stabilization, and impoundment of water flow through diversion and compartmentalization of water via canals and levees have degraded pre-drainage vegetation patterns and microtopographic structure (Davis and Ogden 1994, Ogden 2005, McVoy 2011). The Everglades peatland emerged 5,000 years ago with the stabilization of sea level at approximately current elevations (Loveless 1959, Gleason and Stone 1994). This, combined with subtropical rainfalls, allowed a vast mass of water to slowly flow over a limestone bedrock platform 160 km long and 50 km wide at a near uniform descent totaling about 6 m, ultimately reaching Florida Bay (Stephens 1956, Gleason and Stone 1994, McVoy 2011). Vegetation quickly colonized the area, and peat, in the absence of adequate respiration, accumulated on the limestone bedrock to a depth of 3-3.7 m (Gleason and Stone 1994, McVoy et al. 2011). The “River of Grass” referenced by Douglas (1947) alludes to the dually intertwined processes of the historic riverine nature of the Everglades and the vast sawgrass (Cladium jamaicense) communities that have dominated the landscape for about the last 1,000 years (Bernhardt and Willard 2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this project was to evaluate the use of remote sensing 1) to detect and map Everglades wetland plant communities at different scales; and 2) to compare map products delineated and resampled at various scales with the intent to quantify and describe the quantitative and qualitative differences between such products. We evaluated data provided by Digital Globe’s WorldView 2 (WV2) sensor with a spatial resolution of 2m and data from Landsat’s Thematic and Enhanced Thematic Mapper (TM and ETM+) sensors with a spatial resolution of 30m. We were also interested in the comparability and scalability of products derived from these data sources. The adequacy of each data set to map wetland plant communities was evaluated utilizing two metrics: 1) model-based accuracy estimates of the classification procedures; and 2) design-based post-classification accuracy estimates of derived maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mapping of vegetation patterns over large extents using remote sensing methods requires field sample collections for two different purposes: (1) the establishment of plant association classification systems from samples of relative abundance estimates; and (2) training for supervised image classification and accuracy assessment of satellite data derived maps. One challenge for both procedures is the establishment of confidence in results and the analysis across multiple spatial scales. Continuous data sets that enable cross-scale studies are very time consuming and expensive to acquire and such extensive field sampling can be invasive. The use of high resolution aerial photography (hrAP) offers an alternative to extensive, invasive, field sampling and can provide large volume, spatially continuous, reference information that can meet the challenges of confidence building and multi-scale analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Top predators are known for their ability to 1) affect their communities through predation and 2) induce behavioral modifications. Recent research suggests that they may also play “bottom-up” roles in ecosystems, including transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Therefore, movements of predators may be important in ecosystem dynamics. While other estuarine predators in the FCE have been shown to potentially move nutrients among ecosystems, the potential for bottlenose dolphins (Tursiops truncatus) to play a similar role in the systems has not been investigated. Stable isotope analysis of biopsy samples were used to investigate spatial variation in trophic interactions of dolphins to see if they might transport nutrients. Values of δ15 N suggest dolphins feed at a trophic level similar to other top predators in the ecosystem while δ13 C suggest that dolphins forage largely within food webs where they were sampled rather than transporting nutrients across ecosystem boundaries. The exception may be dolphins foraging in rivers, which may transport nutrients downstream; a pattern opposite to that of bull sharks and alligators in these habitats. Further research is necessary to predict how future changes occurring due to restoration and climate will affect the ecological roles of dolphins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This poster presentation from the May 2015 Florida Library Association Conference, along with the Everglades Explorer discovery portal at http://ee.fiu.edu, demonstrates how traditional bibliographic and curatorial principles can be applied to: 1) selection, cross-walking and aggregation of metadata linking end-users to wide-spread digital resources from multiple silos; 2) harvesting of select PDFs, HTML and media for web archiving and access; 3) selection of CMS domains, sub-domains and folders for targeted searching using an API. Choosing content for this discovery portal is comparable to past scholarly practice of creating and publishing subject bibliographies, except metadata and data are housed in relational databases. This new and yet traditional capacity coincides with: Growth of bibliographic utilities (MarcEdit); Evolution of open-source discovery systems (eXtensible Catalog); Development of target-capable web crawling and archiving systems (Archive-it); and specialized search APIs (Google). At the same time, historical and technical changes – specifically the increasing fluidity and re-purposing of syndicated metadata – make this possible. It equally stems from the expansion of freely accessible digitized legacy and born-digital resources. Innovation principles helped frame the process by which the thematic Everglades discovery portal was created at Florida International University. The path -- to providing for more effective searching and co-location of digital scientific, educational and historical material related to the Everglades -- is contextualized through five concepts found within Dyer and Christensen’s “The Innovator’s DNA: Mastering the five skills of disruptive innovators (2011). The project also aligns with Ranganathan’s Laws of Library Science, especially the 4th Law -- to "save the time of the user.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanogenesis was studied in soils from two sawgrass wetlands of the Florida Everglades. Marl soils exhibited a significantly higher potential rate of methanogenesis than peat soils. In these wetlands, methanogenesis: (1) decreased rapidly with increasing soil depth, (2) increased at higher temperatures and lower Eh, (3) was stimulated by organic compounds (cellulose, glucose and acetate), and (4) remained unaffected by added ammonium. Lowering the Eh in the peat and marl soils with sulfide or sulfate stimulated methanogenesis. In January 1990, phosphate caused a significant increase in methanogenesis. The potential rates of methanogenesis decreased to undetectable levels when water levels dropped below the surface, and peaked one month after the start of the wet season. Methanogenesis appeared to be a relatively important process in carbon cycling in marl soils and these soils do not accumulate peat. Therefore, one possible explanation for peat accumulation in sawgrass wetlands may be their low rates of methanogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In aquatic ecosystems, hydrological fluctuation may generate a gradient of lifehistory responses associated with marsh drying. This study was conducted in the Florida Everglades to document spatial and temporal variability in growth and survivorship of the bluefin killifish (Lucania goodei) from six populations along a hydroperiod gradient. The otolith-microstructure analysis of field-collected fish was used to estimate growth rate and those data were combined with field-density estimates for survivorship analysis. Otolith analysis revealed that L. goodei is extremely short-lived with no variation in growth rates and very little spatial or temporal variation in survivorship. These results suggest that bluefin killifish populations experience similar life histories across a diversity of hydroperiods either through well-mixed populations homogenizing these vital rates, or more likely, that a multitude of factors force L. goodei to respond to these "stressors" in a similar fashion across hydroperiod gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eleocharis cellulosa is a dominant macrophyte in Everglades wet prairie communities. The development of the shoot system in the genus has been described as sympodial but with an unusual adnation of the horizontal and vertical shoots. The growth pattern of E. cellulosa was studied from field collected plants and plants grown in the greenhouse. Plants were extracted and measurements of horizontal and vertical shoot were taken. Dissections, paraffin sectioning and SEM's were used to examine shoot structure in early developmental stages. E. cellulosa was transplanted from the field to the greenhouse and different levels of Nitrogen and Phosphorus were added to determine how it responded phenotypically. Dissections and microscopy showed that growth of the vertical shoots of E. cellulosa is sympodial, while growth of the horizontal shoots is mixed, beginning monopodially then transforming to sympodial growth. Additions of nutrients did not have any effect on the morphology of E. cellulosa.