303 resultados para freshwater Everglades
Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes
Resumo:
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly
Resumo:
Florida Bay is a unique subtropical estuary that while historically oligotrophic, has been subjected to both natural and anthropogenic stressors, including hurricanes, coastal eutrophication and other impacts. These stressors have resulted in degradation of water quality in the past several decades, most evidenced by reoccurring blooms of the picocyanobacterium Synechococcus spp. Major nutrient inputs consist of freshwater flows to the eastern region from runoff and regulated canal releases, inputs from the Everglades to the central region via Taylor Slough, exchanges with the Gulf of Mexico, which include intermittent Shark River inputs to the western region, stormwater and wastewater from the Florida Keys, and atmospheric deposition. These nutrient inputs have resulted in a transition from strong phosphorus (P) limitation of phytoplankton in the eastern bay to nitrogen (N) limitation in the western bay. Large blooms of Synechococcus were most pronounced in the central bay region, in the area of transition between P and N limitation, in the mid-1990s. Although non-toxic, these blooms, which have continued intermittently through the early 2000s, resulted in significant sea-grass and benthic organism mortalities. A new suite of stressors in 2005, including the passages of Hurricanes Katrina, Rita, and Wilma, additional canal releases, and the initiation of road construction to widen the main roadway leading to the Keys, were correlated with a large Synechococcus bloom in the previously clear, strongly P- limited, northeastern region of the bay. Sustained for 3 years, this bloom was accompanied by a shift from P limitation to N limitation during its course. Nutrient bioassay experiments suggest that this bloom persisted due to the ability of Synechococcus to access organic N and P sources, microbial and geochemical cycling of organic and inorganic nutrients in the water column and between the water column and sediments (both suspended particles and benthos), and decreased grazing by benthic fauna due to their die-off.
Resumo:
Compared to phosphorus (P), nitrogen (N) has received little attention across the Everglades landscape. Despite this lack of attention, N plays important roles in many Everglades systems, including being a significant pollutant in Florida Bay and the Gulf of Mexico, the limiting nutrient in highly P-impacted areas, and an important substrate for microbial metabolism. Storage and transport of N throughout the Everglades is dominated by organic forms, including peat soils and dissolved organic N in the water column. In general, N sources are highest in the northern areas; however, atmospheric deposition and active N2 fixation by the periphyton components are a significant N source throughout most systems. Many of the processes involved in the wetland N cycle remain unmeasured for most of the Everglades systems. In particular, the lack of in situ rates for N2 fixation and denitrification prevent the construction of system-level budgets, especially for the Southern mangrove systems where N export into Florida Bay is critical. There is also the potential for several novel N processes (e.g., Anammox) with an as yet undetermined importance for nitrogen cycling and function of the Everglades ecosystem. Phosphorus loading alters the N cycle by stimulating organic N mineralization with resulting flux of ammonium and DON, and at elevated P concentrations, by increasing rates of N2 fixation and N assimilation. Restoration of hydrology has a potential for significantly impacting N cycling in the Everglades both in terms of affecting N transport, but also by altering aerobic-anaerobic transitions at the soil-water interface or in areas with seasonal drawdowns (e.g., marl prairies). Based on the authors’ understanding of N processes, much more research is necessary to adequately predict potential impacts from hydrologic restoration, as well as the function of Everglades systems as sinks, sources, and transformers of N in the South Florida landscape.
Resumo:
There is increasing evidence that certain microbially-derived compounds may account for part of the aquatic dissolved organic nitrogen (DON) pool. Enantiomeric ratios of amino acids were used to assess the microbial input to the DON pool in the Florida Everglades, USA. Elevated levels of d-alanine, d-aspartic acid, d-glutamic acid and d-serine indicated the presence of peptidoglycan in the samples. The estimated peptidoglycan contribution to amino acid nitrogen ranged from 2.8 ± 0.1% to 6.4 ± 0.9%, increasing with salinity from freshwater to coastal waters. The distribution of individual d-amino acids in the samples suggests additional inputs to DON, possibly from archaea or from abiotic racemization of l-amino acids.
Resumo:
Dissolved organic nitrogen (DON) is the least known component of the nitrogen cycle, in part as a result of the lack of adequate analytical methods for its molecular characterization. In this study proteinaceous material in DON, collected at six geomorphologically different sites in the Florida coastal Everglades, was characterized by amino acid analysis and protein gel electrophoresis. The amino acid composition of the samples suggests that the canal DON was more degraded and subject to higher microbial inputs than the mangrove marshwater and marine end-member stations. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) results supported this observation as distinctly different protein profiles were obtained for the canal waters compared to samples collected at other stations. These preliminary results highlight the potential of combining amino acid and intact protein analysis to fingerprint the sources of DON in different aquatic environments, and show SDS-PAGE as a potentially useful method to characterize DON.
Resumo:
Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.
Resumo:
Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.
Resumo:
More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.
Resumo:
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.
Resumo:
Mass inventories of total Hg (THg) and methylmercury (MeHg) and mass budgets of Hg newly deposited during the 2005 dry and wet seasons were constructed for the Everglades. As a sink for Hg, the Everglades has accumulated 914, 1138, 4931, and 7602 kg of legacy THg in its 4 management units, namely Water Conservation Area (WCA) 1, 2, 3, and the Everglades National Park (ENP), respectively, with most Hg being stored in soil. The current annual Hg inputs account only for 1−2% of the legacy Hg. Mercury transport across management units during a season amounts to 1% or less of Hg storage, except for WCA 2 where inflow inputs can contribute 4% of total MeHg storage. Mass budget suggests distinct spatiality for cycling of seasonally deposited Hg, with significantly lower THg fluxes entering water and floc in ENP than in the WCAs. Floc in WCAs can retain a considerable fraction (around 16%) of MeHg produced from the newly deposited Hg during the wet season. This work is important for evaluating the magnitude of legacy Hg contamination and for predicting the fate of new Hg in the Everglades, and provides a methodological example for large-scale studies on Hg cycling in wetlands.
Resumo:
Eutrophication from anthropogenic nutrient enrichment is a primary threat to the oligotrophic freshwater marshes of southern Florida. Macrophyte and periphyton response to increased phosphorus (P) has been well documented in both correlative and experimental studies, but the response of consumer communities remains poorly understood, especially in southern marl prairies. We conducted a P-loading experiment in in situ mesocosms in Taylor Slough, Everglades National Park, and examined the response of macroinvertebrate communities. Mesocosms at two sites were loaded weekly with P at four levels: control (0 g P/m2/yr), low (0.2 g P/m2/yr), intermediate (0.8 g P/m2/yr), and high (3.2 g P/m2/ yr). After ∼2 yrs of P-loading, macroinvertebrates were sampled using periphyton mat and benthic floc cores. Densities of macroinvertebrate taxa (no./g AFDM) were two to 16 times higher in periphyton mats than benthic floc. Periphyton biomass decreased with enrichment at one site, and periphyton was absent from many intermediate and all high P treatments at both sites. Total macroinvertebrate density in periphyton mats increased with intermediate P loads, driven primarily by chironomids and nematodes. Conversely, total macroinvertebrate density in benthic floc decreased with enrichment, driven primarily by loss of chironomids and ceratopogonids (Dasyhelea). This study suggests that macroinvertebrate density increases with enrichment until periphyton mats are lost, after which it decreases, and mat infauna fail to move into benthic substrates in response to mat loss. These results were noted at nutrient levels too low to yield anoxia, and we believe that the decrease of macroinvertebrate density resulted from a loss of habitat. This work illustrates the importance of periphyton mats as habitat for macroinvertebrates in the Everglades. This study also indicates that in this system, macroinvertebrate sampling should be designed to target periphyton mats or conducted with special attention to inclusion of substrates relative to their coverage.
Resumo:
Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Resumo:
Recent research makes clear that much of the Everglade’s flora and fauna have evolved to tolerate or require frequent fires. Nevertheless, restoration of the Everglades has thus far been conceptualized as primarily a water reallocation project. These two forces are directly linked by the influence of water flows on fire fuel moisture content, and are indirectly linked through a series of complex feedback loops. This interaction is made more complex by the alteration and compartmentalization of current water flows and fire regimes, the lack of communication between water and fire management agencies, and the already imperiled state of many local species. It is unlikely, therefore, that restoring water flows will automatically restore the appropriate fire regimes, leaving the prospect of successful restoration in some doubt. The decline of the Cape Sable seaside sparrow, and its potential for recovery, illustrates the complexity of the situation.
Resumo:
A suite of seagrass indicator metrics is developed to evaluate four essential measures of seagrass community status for Florida Bay. The measures are based on several years of monitoring data using the Braun-Blanquet Cover Abundance (BBCA) scale to derive information about seagrass spatial extent, abundance, species diversity and presence of target species. As ecosystem restoration proceeds in south Florida, additional freshwater will be discharged to Florida Bay as a means to restore the bay's hydrology and salinity regime. Primary hypotheses about restoring ecological function of the keystone seagrass community are based on the premise that hydrologic restoration will increase environmental variability and reduce hypersalinity. This will create greater niche space and permit multiple seagrass species to co-exist while maintaining good environmental conditions for Thalassia testudinum, the dominant climax seagrass species. Greater species diversity is considered beneficial to habitat for desired higher trophic level species such as forage fish and shrimp. It is also important to maintenance of a viable seagrass community that will avoid die-off events observed in the past. Indicator metrics are assigned values at the basin spatial scale and are aggregated to five larger zones. Three index metrics are derived by combining the four indicators through logic gates at the zone spatial scale and aggregated to derive a single bay-wide system status score standardized on the System-wide Indicator protocol. The indicators will provide a way to assess progress toward restoration goals or reveal areas of concern. Reporting for each indicator, index and overall system status score is presented in a red–yellow–green format that summarizes information in a readily accessible form for mangers, policy-makers and stakeholders in planning and implementing an adaptive management strategy.