19 resultados para Water use


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Miami-Dade County implemented a series of water conservation programs, which included rebate/exchange incentives to encourage the use of high efficiency aerators (AR), showerheads (SH), toilets (HET) and clothes washers (HEW), to respond to the environmental sustainability issue in urban areas. This study first used panel data analysis of water consumption to evaluate the performance and actual water savings of individual programs. Integrated water demand model has also been developed for incorporating property’s physical characteristics into the water consumption profiles. Life cycle assessment (with emphasis on end-use stage in water system) of water intense appliances was conducted to determine the environmental impacts brought by each practice. Approximately 6 to 10 % of water has been saved in the first and second year of implementation of high efficiency appliances, and with continuing savings in the third and fourth years. Water savings (gallons per household per day) for water efficiency appliances were observed at 28 (11.1%) for SH, 34.7 (13.3%) for HET, and 39.7 (14.5%) for HEW. Furthermore, the estimated contributions of high efficiency appliances for reducing water demand in the integrated water demand model were between 5 and 19% (highest in the AR program). Results indicated that adoption of more than one type of water efficiency appliance could significantly reduce residential water demand. For the sustainable water management strategies, the appropriate water conservation rate was projected to be 1 to 2 million gallons per day (MGD) through 2030. With 2 MGD of water savings, the estimated per capita water use (GPCD) could be reduced from approximately 140 to 122 GPCD. Additional efforts are needed to reduce the water demand to US EPA’s “Water Sense” conservation levels of 70 GPCD by 2030. Life cycle assessment results showed that environmental impacts (water and energy demands and greenhouse gas emissions) from end-use and demand phases are most significant within the water system, particularly due to water heating (73% for clothes washer and 93% for showerhead). Estimations of optimal lifespan for appliances (8 to 21 years) implied that earlier replacement with efficiency models is encouraged in order to minimize the environmental impacts brought by current practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (δ 18O) was enriched (4.8 ± 0.2‰) in the DS relative to the WS (0.0 ± 0.1‰), but groundwater δ 18O remained constant between seasons (DS: 2.2 ± 0.4‰; WS: 2.1 ± 0.1‰). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil–groundwater mix (δ 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on δ 18O data, the roots of R. mangle roots were exposed to salinities of 25.4 ± 1.4 PSU, less saline than either C. jamaicense(39.1 ± 2.2 PSU) or S. portulacastrum (38.6 ± 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to global sea level rise and human-induced changes in freshwater flows.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation ( ), stomatal conductance ( ), intercellular CO2 concentration ( ), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and and, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer's surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer’s surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

δ13C values were determined from cypresstree rings from two different study areas in SouthFlorida. One site is located in the Southeastern Everglades Marsh, where pond cypress (Taxodium ascendens) was sampled from tree islands (annual tree rings from 1970 to 2000). Bald cypress (Taxodium distichum) trees were sampled at the other site, located along the Loxahatchee River in a coastal wetland (decadal tree rings from 1830 to 1990). The isotopic time series from both sites display different, location-specific information. The pond cypressisotopic time series has a positive correlation with the total amount of annual precipitation, while the bald cypress data from the Loxahatchee River study area had two different records dependent on the level of saltwater stress. In general, for terrestrial trees growing in a temperate environment, water stress causes an increase in water-use efficiency (WUE) resulting in a relative 13C enrichment. Yet, trees growing in wetland settings in some cases do not respond in the same manner. We propose a conceptual model based on changes in carbon assimilation and isotopic fractionation as controlled by differences in stomatal resistance (water stress) and mesophyll resistance (biochemical and nutrient related) to explain the isotopic records from both sites. With further work and a longer time series, our approach may be tested, and used to reconstruct change in hydroperiods further back in time, and potentially provide a baseline for wetland restoration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schinus terebinthifolius Raddi (Schinus) is an invasive exotic species widely found in disturbed and native communities of Florida. This species has been shown to displace native species as well as alter community structure and function. The purpose of this study was to determine if the growth and gas exchange patterns of Schinus, under differing salinity conditions, were different from native species. Two native upland glycophytic species (Rapanea punctata and Randia aculeata) and two native mangrove species (Rhizophora mangle and Laguncularia racemosa) were compared with the exotic. Overall, the exotics morphologic changes and gas exchange patterns were most similar to R. mangle. Across treatments, increasing salinity decreased relative growth rate (RGR), leaf area ratio (LAR) and specific leaf area (SLA) but did not affect root/shoot ratios (R:S). Allocation patterns were however significantly different among species. The largest proportion of Schinus biomass was allocated to stems (47%), resulting in plants that were generally taller than the other species. Schinus also had the highest SLA and largest total leaf area of all species. This meant that the exotic, which was taller and had thinner leaves, was potentially able to maintain photosynthetic area comparable to native species. Schinus response patterns show that this exotic exhibits some physiological tolerance for saline conditions. Coupled with its biomass allocation patterns (more stem biomass and large area of thin leaves), the growth traits of this exotic potentially provide this species an advantage over native plants in terms of light acquisition in a brackish forested ecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Historic changes in water-use management in the Florida Everglades have caused the quantity of freshwater inflow to Florida Bay to decline by approximately 60% while altering its timing and spatial distribution. Two consequences have been (1) increased salinity throughout the bay, including occurrences of hypersalinity, coupled with a decrease in salinity variability, and (2) change in benthic habitat structure. Restoration goals have been proposed to return the salinity climates (salinity and its variability) of Florida Bay to more estuarine conditions through changes in upstream water management, thereby returning seagrass species cover to a more historic state. To assess the potential for meeting those goals, we used two modeling approaches and long-term monitoring data. First, we applied the hydrological mass balance model FATHOM to predict salinity climate changes in sub-basins throughout the bay in response to a broad range of freshwater inflow from the Everglades. Second, because seagrass species exhibit different sensitivities to salinity climates, we used the FATHOM-modeled salinity climates as input to a statistical discriminant function model that associates eight seagrass community types with water quality variables including salinity, salinity variability, total organic carbon, total phosphorus, nitrate, and ammonium, as well as sediment depth and light reaching the benthos. Salinity climates in the western sub-basins bordering the Gulf of Mexico were insensitive to even the largest (5-fold) modeled increases in freshwater inflow. However, the north, northeastern, and eastern sub-basins were highly sensitive to freshwater inflow and responded to comparatively small increases with decreased salinity and increased salinity variability. The discriminant function model predicted increased occurrences ofHalodule wrightii communities and decreased occurrences of Thalassia testudinum communities in response to the more estuarine salinity climates. The shift in community composition represents a return to the historically observed state and suggests that restoration goals for Florida Bay can be achieved through restoration of freshwater inflow from the Everglades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isotope signatures of mangrove leaves can vary depending on discrimination associated with plant response to environmental stressors defined by gra­dients of resources (such as water and nutrient limitation) and regulators (such as salinity and sul­fide toxicity). We tested the variability of man­grove isotopic signatures (d13C and d15N) across a stress gradient in south Florida, using green leaves from four mangrove species collected at six sites. Mangroves across the landscape studied are stressed by resource and regulator gradients repre­sented by limited phosphorus concentrations com­bined with high sulfide concentrations, respec­tively. Foliar d13C ratios exhibited a range from ­ 24.6 to –32.7‰, and multiple regression analysis showed that 46% of the variability in mangrove d13C composition could be explained by the differ­ences in dissolved inorganic nitrogen, soluble reac­tive phosphorus, and sulfide porewater concentra­tions. 15N discrimination in mangrove species ranged from –0.1 to 7.7‰, and porewater N, salin­ity, and leaf N:Pa ratios accounted for 41% of this variability in mangrove leaves. The increase in soil P availability reduced 15N discrimination due to higher N demand. Scrub mangroves (<1.5 m tall) are more water-use efficient, as indicated by higher d13C; and have greater nutrient use efficiency ratios of P than do tall mangroves (5 to 10 m tall) existing in sites with greater soil P concentrations. The high variability of mangrove d13C and d15N across these resource and regulator gradients could be a con­founding factor obscuring the linkages between mangrove wetlands and estuarine food webs. These results support the hypothesis that landscape fac­tors may control mangrove structure and function, so that nutrient biogeochemistry and mangrove-based food webs in adjacent estuaries should ac­count for watershed-specific organic inputs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative abundance of diatom species in different habitats can be used as a tool to infer prior environmental conditions and evaluate management decisions that influence habitat quality. Diatom distribution patterns were examined to characterize relationships between assemblage composition and environmental gradients in a subtropical estuarine watershed. We identified environmental correlates of diatom distribution patterns across the Charlotte Harbor, Florida, watershed; evaluated differences among three major river drainages; and determined how accurately local environmental conditions can be predicted using inference models based on diatom assemblages. Sampling locations ranged from freshwater to marine (0.1–37.2 ppt salinity) and spanned broad nutrient concentration gradients. Salinity was the predominant driver of difference among diatom assemblages across the watershed, but other environmental variables had stronger correlations with assemblages within the subregions of the three rivers and harbor. Eighteen indicator taxa were significantly affiliated with subregions. Relationships between diatom taxon distributions and salinity, distance from the harbor, total phosphorus (TP), and total nitrogen (TN) were evaluated to determine the utility of diatom assemblages to predict environmental values using a weighted averaging-regression approach. Diatom-based inferences of these variables were strong (salinity R 2 = 0.96; distance R 2 = 0.93; TN R 2 = 0.83; TP R 2 = 0.83). Diatom assemblages provide reliable estimates of environmental parameters on different spatial scales across the watershed. Because many coastal diatom taxa are ubiquitous, the diatom training sets provided here should enable diatom-based environmental reconstructions in subtropical estuaries that are being rapidly altered by land and water use changes and sea level rise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.