48 resultados para Stipa krylovii ecosystem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural, unenriched Everglades wetlands are known to be limited by phosphorus (P) and responsive to P enrichment. However, whole-ecosystem evaluations of experimental P additions are rare in Everglades or other wetlands. We tested the response of the Everglades wetland ecosystem to continuous, low-level additions of P (0, 5, 15, and 30 μg L−1 above ambient) in replicate, 100 m flow-through flumes located in unenriched Everglades National Park. After the first six months of dosing, the concentration and standing stock of phosphorus increased in the surface water, periphyton, and flocculent detrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean = 149 μg P g−1), while the flocculent detrital layer stored most of the accumulated P (30 μg L−1: mean = 1.732 g P m−2, control: mean = 0.769 g P m−2). Significant short-term responses of P concentration and standing stock were observed primarily in the high dose (30 μg L−1 above ambient) treatment. In addition, the biomass and estimated P standing stock of aquatic consumers increased in the 30 and 5 μg L−1 treatments. Alterations in P concentration and standing stock occurred only at the upstream ends of the flumes nearest to the point source of added nutrient. The total amount of P stored by the ecosystem within the flume increased with P dosing, although the ecosystem in the flumes retained only a small proportion of the P added over the first six months. These results indicate that oligotrophic Everglades wetlands respond rapidly to short-term, low-level P enrichment, and the initial response is most noticeable in the periphyton and flocculent detrital layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation examines the sociological process of conflict resolution and consensus building in South Florida Everglades Ecosystem Restoration through what I define as a Network Management Coordinative Interstitial Group (NetMIG). The process of conflict resolution can be summarized as the participation of interested and affected parties (stakeholders) in a forum of negotiation. I study the case of the Governor's Commission for a Sustainable South Florida (GCSSF) that was established to reduce social conflict. Such conflict originated from environmental disputes about the Everglades and was manifested in the form of gridlock among regulatory (government) agencies, Indian tribes, as well as agricultural, environmental conservationist and urban development interests. The purpose of the participatory forum is to reduce conflicts of interest and to achieve consensus, with the ultimate goal of restoration of the original Everglades ecosystem, while cultivating the economic and cultural bases of the communities in the area. Further, the forum aim to formulate consensus through envisioning a common sustainable community by providing means to achieve a balance between human and natural systems. ^ Data were gathered using participant observation and document analysis techniques to conduct a theoretically based analysis of the role of the Network Management Coordinative Interstitial Group (NetMIG). I use conflict resolution theory, environmental conflict theory, stakeholder analysis, systems theory, differentiation and social change theory, and strategic management and planning theory. ^ The purpose of this study is to substantiate the role of the Governor's Commission for a Sustainable South Florida (GCSSF) as a consortium of organizations in an effort to resolve conflict rather than an ethnographic study of this organization. Environmental restoration of the Everglades is a vehicle for recognizing the significance of a Network Management Coordinative Interstitial Group (NetMIG), namely the Governor's Commission for a Sustainable South Florida (GCSSF), as a structural mechanism for stakeholder participation in the process of social conflict resolution through the creation of new cultural paradigms for a sustainable community. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrology and a history of oligotrophy unite the massive landscape comprising freshwater marsh in Everglades National Park. With restoration of water flow to the Everglades, phosphorus (P) enrichment, both from agricultural and domestic sources, may increase nutrient load to the marsh ecosystem. Previous research of P enrichment of Everglades soil, periphyton, and macrophytes revealed each of these ecosystem components responds to increased P loads with increased production and nutrient content. Interactions among these ecosystem components and how P affects the magnitude and direction of interaction are poorly understood and are the focus of my research. Here I present results of a two-year, two-factor experiment of P enrichment and manipulation in Everglades National Park. I quantified biomass, nutrient content, and production for periphyton and macrophyes and found macrophyte removal drives change in nutrient content, biomass, and production of periphyton. Periphyton removal did not appear to control macrophyte dynamics. Soil chemical and physical characteristics were explained primarily by site differences but there was an enrichment effect of soil porewater nitrite + nitrate, nitrite, and soluble reactive phosphorus. Flocculent materials production and depth were significantly affected by macrophyte removal where depth and production were significantly greater with the no macrophyte treatment. The dominant macrophyte of the marsh, Eleocharis cellulosa, increased more in the unenriched marsh than in the enriched marsh. The combination of these findings suggests that dynamics in floc and periphyton are controlled primarily by the presence of periphyton and that this relationship is significantly affected by low-level P enrichment. These results may be valuable in their application to both managers and policy makers who are involved in the Everglades restoration process. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Florida Everglades, tree islands are conspicuous heterogeneous elements in a complex wetland landscape. I investigated the effects of increased freshwater flow in southern Everglades seasonally flooded tree islands, and characterized biogeochemical interactions among tree islands and the marsh landscape matrix, specifically examining hydrologic flows of nitrogen (N), and landscape N sequestration capacity. I utilized ecological trajectories of key ecosystem variables to differentiate effects of increased sheetflow and hydroperiod. I utilized stable isotope analyses and nutrient content of tree island ecosystem components to test the hypothesis that key processes in tree island nitrogen cycling would favor ecosystem N sequestration. I combined estimates of tree island ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic inputs of N to quantify the net sequestration of N by a seasonally flooded tree island. ^ Results show that increased freshwater flow to seasonally flooded tree islands promoted ecosystem oligotrophy, whereas reduced flows allowed some plant species to cycle P less efficiently. As oligotrophy is a defining parameter of Everglades wetlands, and likely promotes belowground production and peat development, reintroducing freshwater flow from an upstream canal had a favorable effect on ecosystem dynamics of tree islands in the study area. Important factors influencing the stable isotopic composition of nitrogen and carbon were: (1) a contribution to soil N by soil invertebrates, animal excrement, and microbes, (2) a possible NO3 source from an upstream canal and an "open" ecosystem N cycle, and (3) greater availability of phosphorus in tree islands relative to the marsh landscape, suggesting that tree island N cycling favors N sequestration. Hydrologic sources of N were dominated by surface water loads of NO3- and NH 4+, and an important soil N transformation promoting the net loss of surface water DIN was nitrate immobilization associated with soils and surficial leaf litter. The net inorganic N sequestration capacity of a seasonally flooded tree island was 50 g yr-1 m -2. Thus, tree islands likely have an important function in landscape sequestration of inorganic N, and may reduce significant anthropogenic N loads to downstream coastal systems. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home to many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Since large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of inefficient septic systems; a comprehensive survey of selected human waste contamination markers is needed in these areas to assess water quality with respect to non-traditional micro-constituents. ^ This study reports the development and application of new sensitive and selective analytical methods for the fast screening of multiple wastewater tracers, classified as Emergent Pollutants of Concern (EPOC). Novel methods for the trace analysis of non-traditional markers of human-specific contamination such as aminopropanone were developed and used to assess the potential of non-traditional markers as wastewater tracers. ^ During our investigation, surface water samples collected from near shore environments along the South Florida were analyzed for fifteen hormones and steroids, and five commonly detected pharmaceuticals. The compounds most frequently detected were: coprostanol, cholesterol, estrone, β-estradiol, caffeine, triclosan and DEET. Concentrations of caffeine, bisphenol A and DEET were usually higher and more prevalent than the hormonal steroids. In general, it was found that common pharmaceuticals and steroids are widely present in major coastal environments in South Florida. It is also evident that aquatic bodies in heavily urbanized sectors such as the Miami River and Key Largo Harbor contain higher concentrations of several compounds while relatively open bay waters and agricultural areas show reduced chemical signatures. Concentrations of hormones in the Little Venice area of Marathon Key were above the Lowest Observable Effect Levels (LOELs) for several species, indicating that biological resources in this area are at risk. Water quality issues in some of these coastal water environments go beyond eutrophication, thus EPOC should be the target goal for future mitigation projects. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arctic soils store close to 14% of the global soil carbon. Most of arctic carbon is stored below ground in the permafrost. With climate warming the decomposition of the soil carbon could represent a significant positive feedback to global greenhouse warming. Recent evidence has shown that the temperature of the Arctic is already increasing, and this change is associated mostly with anthropogenic activities. Warmer soils will contribute to permafrost degradation and accelerate organic matter decay and thus increase the flux of carbon dioxide and methane into the atmosphere. Temperature and water availability are also important drivers of ecosystem performance, but effects can be complex and in opposition. Temperature and moisture changes can affect ecosystem respiration (ER) and gross primary productivity (GPP) independently; an increase in the net ecosystem exchange can be a result of either a decrease in ER or an increase in GPP. Therefore, understanding the effects of changes in ecosystem water and temperature on the carbon flux components becomes key to predicting the responses of the Arctic to climate change. The overall goal of this work was to determine the response of arctic systems to simulated climate change scenarios with simultaneous changes in temperature and moisture. A temperature and hydrological manipulation in a naturally-drained lakebed was used to assess the short-term effect of changes in water and temperature on the carbon cycle. Also, as part of International Tundra Experiment Network (ITEX), I determined the long-term effect of warming on the carbon cycle in a natural hydrological gradient established in the mid 90's. I found that the carbon balance is highly sensitive to short-term changes in water table and warming. However, over longer time periods, hydrological and temperature changed soil biophysical properties, nutrient cycles, and other ecosystem structural and functional components that down regulated GPP and ER, especially in wet areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a comprehensive ecological indicator for invasive exotic plants, a human-influenced component of the Everglades that could threaten the success of the restoration initiative. Following development of a conceptual ecological model for invasive exotic species, presented as a companion paper in this special issue, we developed criteria to evaluate existing invasive exotic monitoring programs for use in developing invasive exotic performance measures. We then used data from the selected monitoring programs to define specific performance measures, using species presence and abundance as the basis of the indicator for invasive exotic plants. We then developed a series of questions used to evaluate region and/or individual species status with respect to invasion. Finally, we used an expert panel who had answered the questions for invasive exotic plants in the Everglades Lake Okeechobee model to develop a stoplight restoration report card to communicate invasive exotic plant status. The report card system provides a way to effectively evaluate and present indicator data to managers, policy makers, and the public using a uniform format among indicators. Collectively, the model, monitoring assessment, performance measures, and report card enable us to evaluate how invasive plants are impacting the restoration program and how effectively that impact is being managed. Applied through time, our approach also allows us to follow the progress of management actions to control the spread and reduce the impacts of invasive species and can be easily applied and adapted to other large-scale ecosystem projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a conceptual ecological model (CEM) for invasive species to help understand the role invasive exotics have in ecosystem ecology and their impacts on restoration activities. Our model, which can be applied to any invasive species, grew from the eco-regional conceptual models developed for Everglades restoration. These models identify ecological drivers, stressors, effects and attributes; we integrated the unique aspects of exotic species invasions and effects into this conceptual hierarchy. We used the model to help identify important aspects of invasion in the development of an invasive exotic plant ecological indicator, which is described a companion paper in this special issue journal. A key aspect of the CEM is that it is a general ecological model that can be tailored to specific cases and species, as the details of any invasion are unique to that invasive species. Our model encompasses the temporal and spatial changes that characterize invasion, identifying the general conditions that allow a species to become invasive in a de novo environment; it then enumerates the possible effects exotic species may have collectively and individually at varying scales and for different ecosystem properties, once a species becomes invasive. The model provides suites of characteristics and processes, as well as hypothesized causal relationships to consider when thinking about the effects or potential effects of an invasive exotic and how restoration efforts will affect these characteristics and processes. In order to illustrate how to use the model as a blueprint for applying a similar approach to other invasive species and ecosystems, we give two examples of using this conceptual model to evaluate the status of two south Florida invasive exotic plant species (melaleuca and Old World climbing fern) and consider potential impacts of these invasive species on restoration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing scientifically credible tools for measuring the success of ecological restoration projects is a difficult and a non-trivial task. Yet, reliable measures of the general health and ecological integrity of ecosystems are critical for assessing the success of restoration programs. The South Florida Ecosystem Restoration Task Force (Task Force), which helps coordinate a multi-billion dollar multi-organizational effort between federal, state, local and tribal governments to restore the Florida Everglades, is using a small set of system-wide ecological indicators to assess the restoration efforts. A team of scientists and managers identified eleven ecological indicators from a field of several hundred through a selection process using 12 criteria to determine their applicability as part of a system-wide suite. The 12 criteria are: (1) is the indicator relevant to the ecosystem? (2) Does it respond to variability at a scale that makes it applicable to the entire system? (3) Is the indicator feasible to implement and is it measureable? (4) Is the indicator sensitive to system drivers and is it predictable? (5) Is the indicator interpretable in a common language? (6) Are there situations where an optimistic trend with regard to an indicator might suggest a pessimistic restoration trend? (7) Are there situations where a pessimistic trend with regard to an indicator may be unrelated to restoration activities? (8) Is the indicator scientifically defensible? (9) Can clear, measureable targets be established for the indicator to allow for assessments of success? (10) Does the indicator have specificity to be able to result in corrective action? (11) What level of ecosystem process or structure does the indicator address? (12) Does the indicator provide early warning signs of ecological change? In addition, a two page stoplight report card was developed to assist in communicating the complex science inherent in ecological indicators in a common language for resource managers, policy makers and the public. The report card employs a universally understood stoplight symbol that uses green to indicate that targets are being met, yellow to indicate that targets have not been met and corrective action may be needed and red to represent that targets are far from being met and corrective action is required. This paper presents the scientific process and the results of the development and selection of the criteria, the indicators and the stoplight report card format and content. The detailed process and results for the individual indicators are presented in companion papers in this special issue of Ecological Indicators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article outlines an approach, based on ecosystem services, for assessing the trade-offs inherent in managing humans embedded in ecological systems. Evaluating these trade-offs requires an understanding of the biophysical magnitudes of the changes in ecosystem services that result from human actions, and of the impact of these changes on human welfare. We summarize the state of the art of ecosystem services-based management and the information needs for applying it. Three case studies of Long Term Ecological Research (LTER) sites--coastal, urban, and agricultural-- illustrate the usefulness, information needs, quantification possibilities, and methods for this approach. One example of the application of this approach, with rigorously established service changes and valuations taken from the literature, is used to illustrate the potential for full economic valuation of several agricultural landscape management options, including managing for water quality, biodiversity, and crop productivity.