16 resultados para Pewaukee (Wis.)--Maps.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fall 2007 Newsletter for FIU's Maps and Imagery User Services department.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Fall 2008 Map and User Imagery Services Newsletter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Spring 2009 Map and User Imagery Services Newsletter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Fall 2009 Map and User Imagery Services Newsletter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Fall 2009 Map and User Imagery Services Newsletter; Vol. 3, issue 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Spring 2010 Map and User Imagery Services Newsletter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Fall 2012 Map and User Imagery Services Newsletter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Spring/Summer 2013 Map and User Imagery Services Newsletter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data. Results: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers. Conclusions: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Fall 2013 Map and User Imagery Services Newsletter

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 7 maps illustrating the impact of sea level rise on Nautilus Island in Miami Beach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Florida International University's Spring 2015 Maps and User Imagery Services Newsletter