17 resultados para LOTUS-LEAF


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridescent blue leaf coloration in four Malaysian rain forest understory plants, Diplazium tomentosum Bl. (Athyriaceae), Lindsaea lucida Bl. (Lindsaeaceae), Begonia pavonina Ridl. (Begoniaceae), and Phyllagathis rotundifolia Bl. (Melastomataceae) is caused by a physical effect, constructive interference of reflected blue light. The ultrastructural basis for this in D. tomentosum and L. lucida is multiple layers of cellulose microfibrils in the uppermost cell walls of the adaxial epidermis. The helicoidal arrangement of these fibrils is analogous to that which produces a similar color in arthropods. In B. pavonina and P. rotundifolia the blue-green coloration is caused by parallel lamellae in specialized plastids adjacent to the abaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridescent blue leaf coloration in two neotropical ferns, Danaea nodosa (L.) Sm. (Marattiaceae) and Trichomanes elegans L. C. Rich. (Hymenophyllaceae), is caused by thin film constructive interference. The ultrastructural basis for the film in D. nodosa is multiple layers of cellulose microfibrils in the adaxial cell walls of the adaxial epidermis. The apparent helicoidal arrangement of the fibrils is analogous to similar color production in arthropods. In T. elegans the blue-green coloration is caused by the remarkably uniform thickness and arrangement of grana in specialized chloroplasts adjacent to the adaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown but apparently different from that previously studied in Selaginella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteens hade-adaptedr ain forest species were comparedw ith twelve sun-adaptedt ropical forest species for correlates to leaf optical properties (described previously in Amer. J. Bot. 73: 1100-1108). The two samples were similar in absorptance of quanta for photosynthesis, but the shade-adaptedt axa: 1) had significantlyl ower specificl eaf weights,i ndicatinga more metabolically efficient production of surface for quantum capture; 2) synthesized less chlorophyll per unit area; and 3) used less chlorophyll for capturing the same quanta for photosynthesis. The anatomical features that best correlate with this increased efficiency are palisade cell shape and chloroplast distribution. Palisade cells with more equal dimensions have more chloroplasts on their abaxial surfaces. This dense layer of chloroplasts maximizes the light capture efficiency limited by sieve effects. The more columnar palisade cells of sun-adapted taxa allow light to pass through the central vacuoles and spaces between cells, making chloroplasts less efficient in energy capture, but allowing light to reach chloroplasts in the spongy mesophyll. Pioneer species may be an exception to these two groups of species. Three pioneer taxa included in this study have columnar palisade cells that are extremely narrow and packed closely together. This layer allows little penetration of light, but exposure of the leaf undersurface may provide illumination of spongy mesophyll chloroplasts in these plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opticalp ropertieso f the leaves of twelve tropicals un speciesa nd thirteent ropicale xtreme shade species were examinedw ith an integratings pherea ttachedt o a spectroradiometerM. easurements of diffuse reflectance and transmittance allowed calculations of absorptance, 350- 1,100 nm. Althoughs ome shade species absorbedh igherp ercentageso f quantumf lux densities for photosynthesis (400-700 nm, PPFD) than the mean for the sun species, the sun and shade species as groups were not significantly different from each other: 90.2, S.D. 3.6% for shade species and 88.6, S.D. 2.4% for the sun species. The groups of species did not differ in total absorptance of energy 350-1,100 nm. Furthermore, the sun and shade species were identical in theirs hifto f absorptancea t wavelengthsb etween6 50 and 750 nm. The anthocyanicc oloration of the leaf undersurfaceso f two species polymorphicf or this characteristic( Trionela hirsuta and Ischnosciphonp ruinosus)i s correlatedw ith increaseda bsorptancea t the uppere nd of the action spectrum of photosynthesis. Although sun and shade species have similar optical properties, the energy investment (as documented by dry wt per unit area of leaf surface) is much less for the shade species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water hyacinth leaves in natural populations vary from being long and thin-petioled to being short with inflated petioles. A variety of factors has been used experimentally to alter water hyacinth leaf shape, but what controls the development of leaf morphology in the field has not been established. We measured photosynthetic photon flux density (PPFD) and spectral distribution of radiation in a natural water hyacinth population. PPFD in the center of the water hyacinth mat was reduced to 2.7% of full sunlight, and the red to far red (R:FR) ratio was reduced to 0.28. When shoot tips of plants were exposed to artificial light environments, only plants in the treatment with a R:FR ratio comparable to that in the natural population produced leaves with long, thin petioles. Shoot tips in full sun or covered with clear plastic bags or bags that reduced light quantity without greatly altering light quality produced shorter leaves with inflated petioles. We hypothesize that the altered light quality inside a mat is a major environmental control of water hyacinth leaf morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For six tropical rainforests pecies, young leaves produced on rapidly flushings hoots had markedlyl ower reflectancei n the UV-B region than did mature leaves and contained higher levels of anthocyaninsa nd total phenols. Progressive changes in these characteristicps rovide empirical support for an earlier suggestiont hat anthocyaninsi n flushings hoots of tropicalt rees have adaptive value throught heir ultravioleta bsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the development of leaf characters in two Southeast Asian dipterocarp forest trees under different photosynthetic photon flux densities (PFD) and spectral qualities (red to far-red, R:FR). The two species, Hopea helferi and H. odorata, are taxonomically closely related but differ in their ecological requirements; H. helferi is more drought tolerant and H. odorata more shade tolerant. Seedlings were grown in replicated shadehouse treatments of differing PFD and R:FR. We measured or calculated (1) leaf and tissue thicknesses; (2) mesophyll parenchyma, air space, and lignified tissue volumes; (3) mesophyll air volumes (Vmes/Asurf) and surfaces (Ames/Asurf); (4) palisade cell length and width; (5) chlorophyll/cm2 and a/ b; (6) leaf absorption; and (7) attenuance/absorbance at 652 and 550 nm. These characters varied in response to light conditions in both taxa. Characters were predominantly affected by PFD, and R:FR slightly influenced many characters. Leaf characters of H. odorata were more plastic in response to treatment conditions. Characters were correlated with each other in a complex fashion. Variation in leaf anatomy is most likely a consequence of increasing leaf thickness in both taxa, which may increase mechanical strength and defense against herbivory in more exposed environments. Variation in leaf optical properties was most likely affected by pigment photo-bleaching in treatments of more intense PFD and was not correlated with Amax. The greater plasticity of leaf responses in H. odorata helps explain the acclimation over the range of light conditions encountered by this shade-tolerant taxon. The dense layer of scales on the leaf undersurface and other anatomical characters in H. helferi reduced gas exchange and growth in this drought-tolerant tree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaves of woody plants at Harvard Forest in Central Massachusetts, USA, changed color during senescence; 70% (62/89) of the woody species examined anatomically contained anthocyanins during senescence. Anthocyanins were not present in summer green leaves, and appeared primarily in the vacuoles of palisade parenchyma cells. Yellow coloration was a result of the unmasking of xanthophyll pigments in senescing chloroplasts. In nine red-senescing species, anthocyanins were not detectable in mature leaves, and were synthesized de novo in senescence, with less than 20 m g cm - 2 of chlorophyll remaining. Xanthophyll concentrations declined in relation to chlorophyll to the same extent in both yellow- and red-leaved taxa. Declines in the maximum photosystem II quantum yield of leaves collected prior to dawn were only slightly less in the red-senescing species, indicating no long-term protective activity. Red-leaved species had significantly greater mass/area and lower chlorophyll a / b ratios during senescence. Nitrogen tissue concentrations in mature and senescent leaves negatively correlated to anthocyanin concentrations in senescent leaves, weak evidence for more efficient nitrogen resorption in anthocyanic species. Shading retarded both chlorophyll loss and anthocyanin production in Cornus alternifolia , Acer rubrum , Acer saccharum , Quercus rubra and Viburnum alnifolium . It promoted chlorophyll loss in yellow-senescing Fagus grandifolia . A reduced red : far-red ratio did not affect this process. Anthocyanins did not increase leaf temperatures in Q. rubra and Vaccinium corymbosum on cold and sunny days. The timing of leaf-fall was remarkably constant from year to year, and the order of senescence of individual species was consistent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthocyanins are synthesized during leaf senescence in certain plants across virtually all biomes, but are most spectacular in the autumn foliage of temperate deciduous forests. The patterns of color production in senescing foliage depend at least partly upon species composition and their phenology. Both ecological and physiological explanations have been raised to explain why plants produce this pigment just before leaf fall. Physiological explanations, as photoprotection, predict that cyanic leaves would be better able to resorb nitrogen during the process of chlorophyll degradation. Ecological explanations predict better dispersal of propagules advertised by association with the brilliantly colored leaves (plausible for only a minority of species), or warning against egg-laying activity of herbivorous insects, as aphids. These hypotheses make predictions that we now can test, to help us understand this old mystery - and majestic phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subtropical hardwood forests of southern Florida are formed by 120 frost-sensitive, broadleaved angiosperm species that range throughout the Caribbean. Previous work on a series of small sized forest component patches of a 20 km2, forest preserve in northern Key Largo indicate that a shift in species composition was associated with a 100 year forest developmental sequence, and this shift was associated with an increasingly evergreen canopy. This document investigates the underlying differences of the biology of trees that live in this habitat, and is specifically focused on the impact of leaf morphology on changing nutrient cycling patterns. Measurements of the area, thickness, dry mass, nutrient content and longevity of several leaves from 3-4 individuals of ten species were conducted in combination with a two-year leaf litter collection and nutrient analysis to determine that species with thicker, denser leaves cycled scarce nutrients up to 2-3 times more efficiently than thin leaved tree species, and the leaf thickness/density index predicts role in forest development in a parallel direction as the index predicts nutrient cycling efficiency. A three year set of observations on the relative abundance of new leaves, flowers and fruits of the same tree species provides an opportunity to evaluate the consequences the leaf morphology/nutrient cycling/forest development relationship to forest habitat quality. Results of the three documents support a mechanistic link between forest development and nutrient cycling, and suggests that older forests are likely to be better habitats based on the availability of valuable forest products like new leaves, flowers, and fruits throughout the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The southern Everglades mangrove ecotone is characterized by extensive dwarf Rhizophora mangle L. shrub forests with a seasonally variable water source (Everglades – NE Florida Bay) and residence times ranging from short to long. We conducted a leaf leaching experiment to understand the influence that water source and its corresponding water quality have on (1) the early decay of R. mangle leaves and (2) the early exchange of total organic carbon (TOC) and total phosphorus (TP) between leaves and the water column. Newly senesced leaves collected from lower Taylor River (FL) were incubated in bottles containing water from one of three sources (Everglades, ambient mangrove, and Florida Bay) that spanned a range of salinity from 0 to 32‰, [TOC] from 710 to 1400 μM, and [TP] from 0.17 to 0.33 μM. We poisoned half the bottles in order to quantify abiotic processes (i.e., leaching) and assumed that non-poisoned bottles represented both biotic (i.e., microbial) and abiotic processes. We sacrificed bottles after 1,2, 5, 10, and 21 days of incubation and quantified changes in leaf mass and changes in water column [TOC] and [TP]. We saw 10–20% loss of leaf mass after 24 h—independent of water treatment—that leveled off by Day 21. After 3 weeks, non-poisoned leaves lost more mass than poisoned leaves, and there was only an effect of salinity on mass loss in poisoned incubations—with greatest leaching-associated losses in Everglades freshwater. Normalized concentrations of TOC in the water column increased by more than two orders of magnitude after 21 days with no effect of salinity and no difference between poisoned and non-poisoned treatments. However, normalized [TP] was lower in non-poisoned incubations as a result of immobilization by epiphytic microbes. This immobilization was greatest in Everglades freshwater and reflects the high P demand in this ecosystem. Immobilization of leached P in mangrove water and Florida Bay water was delayed by several days and may indicate an initial microbial limitation by labile C during the dry season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and long-term (1 year) changes in mass, as well as C-, N-, and P-content of decomposing leaf litter. We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, but potential long-term sinks for N and P. In May 1998, we conducted a 3-week leaching experiment, incubating fresh, individual leaves in seawater for up to 21 days. From May 1997 to May 1998, leaf litter in mesh bags decomposed on the forest floor at two dwarf mangrove sites. Leaching accounted for about 33% loss of dry mass from R. mangle leaves after 3 weeks. Leaching losses were rapid, peaking by day 2, and large, with leachate concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of magnitude after 3 weeks. Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 21 days, reflecting the relatively large leaching losses of N and P. Loss of mass in the litterbags leveled off after 4 months, with roughly 60%dry mass remaining (DMR) after nearly 1 year of decomposition. The mass of carbon in each litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-term accumulation of these constituents into the detritus. Subsequently, the leaf C:N ratio dropped significantly from 90 to 34 after 361 days. Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting high accumulation of P relative to N. A review of several estuarine macrophyte decomposition studies reveals a trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P. We believe that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation ( ), stomatal conductance ( ), intercellular CO2 concentration ( ), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and and, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.