77 resultados para Engineering, civil
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
A major consequence of contamination at the local level’s population as it relates to environmental health and environmental engineering is childhood lead poisoning. Environmental contamination is one of the pressing environmental concerns facing the world today. Current approaches often focus on large contaminated industrial size sites that are designated by regulatory agencies for site remediation. Prior to this study, there were no known published studies conducted at the local and smaller scale, such as neighborhoods, where often much of the contamination is present to remediate. An environmental health study of local lead-poisoning data in Liberty City, Little Haiti and eastern Little Havana in Miami-Dade County, Florida accounted for a disproportionately high number of the county’s reported childhood lead poisoning cases. An engineering system was developed and designed for a comprehensive risk management methodology that is distinctively applicable to the geographical and environmental conditions of Miami-Dade County, Florida. Furthermore, a scientific approach for interpreting environmental health concerns, while involving detailed environmental engineering control measures and methods for site remediation in contained media was developed for implementation. Test samples were obtained from residents and sites in those specific communities in Miami-Dade County, Florida (Gasana and Chamorro 2002). Currently lead does not have an Oral Assessment, Inhalation Assessment, and Oral Slope Factor; variables that are required to run a quantitative risk assessment. However, various institutional controls from federal agencies’ standards and regulation for contaminated lead in media yield adequate maximum concentration limits (MCLs). For this study an MCL of .0015 (mg/L) was used. A risk management approach concerning contaminated media involving lead demonstrates that the linkage of environmental health and environmental engineering can yield a feasible solution.
Resumo:
The major barrier to practical optimization of pavement preservation programming has always been that for formulations where the identity of individual projects is preserved, the solution space grows exponentially with the problem size to an extent where it can become unmanageable by the traditional analytical optimization techniques within reasonable limit. This has been attributed to the problem of combinatorial explosion that is, exponential growth of the number of combinations. The relatively large number of constraints often presents in a real-life pavement preservation programming problems and the trade-off considerations required between preventive maintenance, rehabilitation and reconstruction, present yet another factor that contributes to the solution complexity. In this research study, a new integrated multi-year optimization procedure was developed to solve network level pavement preservation programming problems, through cost-effectiveness based evolutionary programming analysis, using the Shuffled Complex Evolution (SCE) algorithm.^ A case study problem was analyzed to illustrate the robustness and consistency of the SCE technique in solving network level pavement preservation problems. The output from this program is a list of maintenance and rehabilitation treatment (M&R) strategies for each identified segment of the network in each programming year, and the impact on the overall performance of the network, in terms of the performance levels of the recommended optimal M&R strategy. ^ The results show that the SCE is very efficient and consistent in the simultaneous consideration of the trade-off between various pavement preservation strategies, while preserving the identity of the individual network segments. The flexibility of the technique is also demonstrated, in the sense that, by suitably coding the problem parameters, it can be used to solve several forms of pavement management programming problems. It is recommended that for large networks, some sort of decomposition technique should be applied to aggregate sections, which exhibit similar performance characteristics into links, such that whatever M&R alternative is recommended for a link can be applied to all the sections connected to it. In this way the problem size, and hence the solution time, can be greatly reduced to a more manageable solution space. ^ The study concludes that the robust search characteristics of SCE are well suited for solving the combinatorial problems in long-term network level pavement M&R programming and provides a rich area for future research. ^
Resumo:
The predictions contained within this dissertation suggest further rapid growth of the cruise industry and the requirement for additional cruise ship berthing worldwide. The factors leading to the tremendous growth in the cruise marketplace are identified and individually addressed. Unfortunately, planning factors associated with the design and construction of cruise ship seaports are not readily available and methods to manage this growth have not been addressed. This dissertation provides accurate and consolidated planning factors essential for comprehensive consideration of cruise ship requirements and design of growing cruise ship ports. The consolidation of these factors results in faster and better informed choices for the port owner/operator with regard to port expansion. Furthermore, this dissertation proposes development of new systems to better manage increasing passenger and ship traffic. If implemented, this will result in optimized port systems providing a greater level of service to passengers and port authorities while simultaneously minimizing environmental and economic impact. ^
Resumo:
Pavement performance is one of the most important components of the pavement management system. Prediction of the future performance of a pavement section is important in programming maintenance and rehabilitation needs. Models for predicting pavement performance have been developed on the basis of traffic and age. The purpose of this research is to extend the use of a relatively new approach to performance prediction in pavement performance modeling using adaptive logic networks (ALN). Adaptive logic networks have recently emerged as an effective alternative to artificial neural networks for machine learning tasks. ^ The ALN predictive methodology is applicable to a wide variety of contexts including prediction of roughness based indices, composite rating indices and/or individual pavement distresses. The ALN program requires key information about a pavement section, including the current distress indexes, pavement age, climate region, traffic and other variables to predict yearly performance values into the future. ^ This research investigates the effect of different learning rates of the ALN in pavement performance modeling. It can be used at both the network and project level for predicting the long term performance of a road network. Results indicate that the ALN approach is well suited for pavement performance prediction modeling and shows a significant improvement over the results obtained from other artificial intelligence approaches. ^
Resumo:
Highways are generally designed to serve a mixed traffic flow that consists of passenger cars, trucks, buses, recreational vehicles, etc. The fact that the impacts of these different vehicle types are not uniform creates problems in highway operations and safety. A common approach to reducing the impacts of truck traffic on freeways has been to restrict trucks to certain lane(s) to minimize the interaction between trucks and other vehicles and to compensate for their differences in operational characteristics. ^ The performance of different truck lane restriction alternatives differs under different traffic and geometric conditions. Thus, a good estimate of the operational performance of different truck lane restriction alternatives under prevailing conditions is needed to help make informed decisions on truck lane restriction alternatives. This study develops operational performance models that can be applied to help identify the most operationally efficient truck lane restriction alternative on a freeway under prevailing conditions. The operational performance measures examined in this study include average speed, throughput, speed difference, and lane changes. Prevailing conditions include number of lanes, interchange density, free-flow speeds, volumes, truck percentages, and ramp volumes. ^ Recognizing the difficulty of collecting sufficient data for an empirical modeling procedure that involves a high number of variables, the simulation approach was used to estimate the performance values for various truck lane restriction alternatives under various scenarios. Both the CORSIM and VISSIM simulation models were examined for their ability to model truck lane restrictions. Due to a major problem found in the CORSIM model for truck lane modeling, the VISSIM model was adopted as the simulator for this study. ^ The VISSIM model was calibrated mainly to replicate the capacity given in the 2000 Highway Capacity Manual (HCM) for various free-flow speeds under the ideal basic freeway section conditions. Non-linear regression models for average speed, throughput, average number of lane changes, and speed difference between the lane groups were developed. Based on the performance models developed, a simple decision procedure was recommended to select the desired truck lane restriction alternative for prevailing conditions. ^
Resumo:
Land use and transportation interaction has been a research topic for several decades. There have been efforts to identify impacts of transportation on land use from several different perspectives. One focus has been the role of transportation improvements in encouraging new land developments or relocation of activities due to improved accessibility. The impacts studied have included property values and increased development. Another focus has been on the changes in travel behavior due to better mobility and accessibility. Most studies to date have been conducted in metropolitan level, thus unable to account for interactions spatially and temporally at smaller geographic scales. ^ In this study, a framework for studying the temporal interactions between transportation and land use was proposed and applied to three selected corridor areas in Miami-Dade County, Florida. The framework consists of two parts: one is developing of temporal data and the other is applying time series analysis to this temporal data to identify their dynamic interactions. Temporal GIS databases were constructed and used to compile building permit data and transportation improvement projects. Two types of time series analysis approaches were utilized: univariate models and multivariate models. Time series analysis is designed to describe the dynamic consequences of time series by developing models and forecasting the future of the system based on historical trends. Model estimation results from the selected corridors were then compared. ^ It was found that the time series models predicted residential development better than commercial development. It was also found that results from three study corridors varied in terms of the magnitude of impacts, length of lags, significance of the variables, and the model structure. Long-run effect or cumulated impact of transportation improvement on land developments was also measured with time series techniques. The study offered evidence that congestion negatively impacted development and transportation investments encouraged land development. ^
Resumo:
Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^
Resumo:
Choosing between Light Rail Transit (LRT) and Bus Rapid Transit (BRT) systems is often controversial and not an easy task for transportation planners who are contemplating the upgrade of their public transportation services. These two transit systems provide comparable services for medium-sized cities from the suburban neighborhood to the Central Business District (CBD) and utilize similar right-of-way (ROW) categories. The research is aimed at developing a method to assist transportation planners and decision makers in determining the most feasible system between LRT and BRT. ^ Cost estimation is a major factor when evaluating a transit system. Typically, LRT is more expensive to build and implement than BRT, but has significantly lower Operating and Maintenance (OM) costs than BRT. This dissertation examines the factors impacting capacity and costs, and develops cost models, which are a capacity-based cost estimate for the LRT and BRT systems. Various ROW categories and alignment configurations of the systems are also considered in the developed cost models. Kikuchi's fleet size model (1985) and cost allocation method are used to develop the cost models to estimate the capacity and costs. ^ The comparison between LRT and BRT are complicated due to many possible transportation planning and operation scenarios. In the end, a user-friendly computer interface integrated with the established capacity-based cost models, the LRT and BRT Cost Estimator (LBCostor), was developed by using Microsoft Visual Basic language to facilitate the process and will guide the users throughout the comparison operations. The cost models and the LBCostor can be used to analyze transit volumes, alignments, ROW configurations, number of stops and stations, headway, size of vehicle, and traffic signal timing at the intersections. The planners can make the necessary changes and adjustments depending on their operating practices. ^
Resumo:
The rate of fatal crashes in Florida has remained significantly higher than the national average for the last several years. The 2003 statistics from the National Highway Traffic Safety Administration (NHTSA), the latest available, show a fatality rate in Florida of 1.71 per 100 million vehicle-miles traveled compared to the national average of 1.48 per 100 million vehicle-miles traveled. The objective of this research is to better understand the driver, environmental, and roadway factors that affect the probability of injury severity in Florida. ^ In this research, the ordered logit model was used to develop six injury severity models; single-vehicle and two-vehicle crashes on urban freeways and urban principal arterials and two-vehicle crashes at urban signalized and unsignalized intersections. The data used in this research included all crashes that occurred on the state highway system for the period from 2001 to 2003 in the Southeast Florida region, which includes the Miami-Dade, Broward and Palm Beach Counties.^ The results of the analysis indicate that the age group and gender of the driver at fault were significant factors of injury severity risk across all models. The greatest risk of severe injury was observed for the age groups 55 to 65 and 66 and older. A positive association between injury severity and the race of the driver at fault was also found. Driver at fault of Hispanic origin was associated with a higher risk of severe injury for both freeway models and for the two-vehicle crash model on arterial roads. A higher risk of more severe injury crash involvement was also found when an African-American was the at fault driver on two-vehicle crashes on freeways. In addition, the arterial class was also found to be positively associated with a higher risk of severe crashes. Six-lane divided arterials exhibited the highest injury severity risk of all arterial classes. The lowest severe injury risk was found for one way roads. Alcohol involvement by the driver at fault was also found to be a significant risk of severe injury for the single-vehicle crash model on freeways. ^
Resumo:
Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^
Resumo:
Optimization of adaptive traffic signal timing is one of the most complex problems in traffic control systems. This dissertation presents a new method that applies the parallel genetic algorithm (PGA) to optimize adaptive traffic signal control in the presence of transit signal priority (TSP). The method can optimize the phase plan, cycle length, and green splits at isolated intersections with consideration for the performance of both the transit and the general vehicles. Unlike the simple genetic algorithm (GA), PGA can provide better and faster solutions needed for real-time optimization of adaptive traffic signal control. ^ An important component in the proposed method involves the development of a microscopic delay estimation model that was designed specifically to optimize adaptive traffic signal with TSP. Macroscopic delay models such as the Highway Capacity Manual (HCM) delay model are unable to accurately consider the effect of phase combination and phase sequence in delay calculations. In addition, because the number of phases and the phase sequence of adaptive traffic signal may vary from cycle to cycle, the phase splits cannot be optimized when the phase sequence is also a decision variable. A "flex-phase" concept was introduced in the proposed microscopic delay estimation model to overcome these limitations. ^ The performance of PGA was first evaluated against the simple GA. The results show that PGA achieved both faster convergence and lower delay for both under- or over-saturated traffic conditions. A VISSIM simulation testbed was then developed to evaluate the performance of the proposed PGA-based adaptive traffic signal control with TSP. The simulation results show that the PGA-based optimizer for adaptive TSP outperformed the fully actuated NEMA control in all test cases. The results also show that the PGA-based optimizer was able to produce TSP timing plans that benefit the transit vehicles while minimizing the impact of TSP on the general vehicles. The VISSIM testbed developed in this research provides a powerful tool to design and evaluate different TSP strategies under both actuated and adaptive signal control. ^
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
Resumo:
Rapid population increase and booming economic growth have caused a significant escalation in car ownership in many cities, leading to additional or, multiple traffic problems on congested roadways. The increase of automobiles is generating a significant amount of congestion and pollution in many cities. It has become necessary to find a solution to the ever worsening traffic problems in our cities. Building more roadways is nearly impossible due to the limitations of right-of-way in cities. Studies have shown that guideway transit could provide effective transportation and could stimulate land development. The Medium-Capacity Guideway Transit (MCGT) is one of the alternatives to solve this problem. The objective of this research was to better understand the characteristics of MCGT systems, to investigate the existing MCGT systems around the world and determine the main factors behind the planning of successful systems, and to develop a MCGT planning guide. The factors utilized in this study were determined and were analyzed using Excel. A MCGT Planning Guide was developed using Microsoft Visual Basic. ^ A MCGT was defined as a transit system whose capacity can carry up to 20,000 passengers per hour per direction (pphpd). The results shown that Light Rail Transit (LRT) is favored when peak hour demand is less than 13,000 pphpd. Automated People Mover (APM) is favored when the peak hour demand is more than 18,000 pphpd. APM systems could save up to three times the waiting time cost compared to that of the LRT. If comfort and convenience are important, then using an APM does make sense. However, if cost is the critical factor, then LRT will make more sense because it is reasonable service at a reasonable price. If travel time and safety (accident/crush) costs were included in calculating life-cycle “total” costs, the capital cost advantage of LRT disappeared and APM could become very competitive. The results also included a range of cost-performance criteria for MCGT systems that help planners, engineers, and decision-makers to select the most feasible system for their respective areas. ^
Resumo:
The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^