16 resultados para Data security
Resumo:
Mediation techniques provide interoperability and support integrated query processing among heterogeneous databases. While such techniques help data sharing among different sources, they increase the risk for data security, such as violating access control rules. Successful protection of information by an effective access control mechanism is a basic requirement for interoperation among heterogeneous data sources. ^ This dissertation first identified the challenges in the mediation system in order to achieve both interoperability and security in the interconnected and collaborative computing environment, which includes: (1) context-awareness, (2) semantic heterogeneity, and (3) multiple security policy specification. Currently few existing approaches address all three security challenges in mediation system. This dissertation provides a modeling and architectural solution to the problem of mediation security that addresses the aforementioned security challenges. A context-aware flexible authorization framework was developed in the dissertation to deal with security challenges faced by mediation system. The authorization framework consists of two major tasks, specifying security policies and enforcing security policies. Firstly, the security policy specification provides a generic and extensible method to model the security policies with respect to the challenges posed by the mediation system. The security policies in this study are specified by 5-tuples followed by a series of authorization constraints, which are identified based on the relationship of the different security components in the mediation system. Two essential features of mediation systems, i. e., relationship among authorization components and interoperability among heterogeneous data sources, are the focus of this investigation. Secondly, this dissertation supports effective access control on mediation systems while providing uniform access for heterogeneous data sources. The dynamic security constraints are handled in the authorization phase instead of the authentication phase, thus the maintenance cost of security specification can be reduced compared with related solutions. ^
Resumo:
The purpose of the research is to investigate the emerging data security methodologies that will work with most suitable applications in the academic, industrial and commercial environments. Of several methodologies considered for Advanced Encryption Standard (AES), MARS (block cipher) developed by IBM, has been selected. Its design takes advantage of the powerful capabilities of modern computers to allow a much higher level of performance than can be obtained from less optimized algorithms such as Data Encryption Standards (DES). MARS is unique in combining virtually every design technique known to cryptographers in one algorithm. The thesis presents the performance of 128-bit cipher flexibility, which is a scaled down version of the algorithm MARS. The cryptosystem used showed equally comparable performance in speed, flexibility and security, with that of the original algorithm. The algorithm is considered to be very secure and robust and is expected to be implemented for most of the applications.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
With the recent explosion in the complexity and amount of digital multimedia data, there has been a huge impact on the operations of various organizations in distinct areas, such as government services, education, medical care, business, entertainment, etc. To satisfy the growing demand of multimedia data management systems, an integrated framework called DIMUSE is proposed and deployed for distributed multimedia applications to offer a full scope of multimedia related tools and provide appealing experiences for the users. This research mainly focuses on video database modeling and retrieval by addressing a set of core challenges. First, a comprehensive multimedia database modeling mechanism called Hierarchical Markov Model Mediator (HMMM) is proposed to model high dimensional media data including video objects, low-level visual/audio features, as well as historical access patterns and frequencies. The associated retrieval and ranking algorithms are designed to support not only the general queries, but also the complicated temporal event pattern queries. Second, system training and learning methodologies are incorporated such that user interests are mined efficiently to improve the retrieval performance. Third, video clustering techniques are proposed to continuously increase the searching speed and accuracy by architecting a more efficient multimedia database structure. A distributed video management and retrieval system is designed and implemented to demonstrate the overall performance. The proposed approach is further customized for a mobile-based video retrieval system to solve the perception subjectivity issue by considering individual user's profile. Moreover, to deal with security and privacy issues and concerns in distributed multimedia applications, DIMUSE also incorporates a practical framework called SMARXO, which supports multilevel multimedia security control. SMARXO efficiently combines role-based access control (RBAC), XML and object-relational database management system (ORDBMS) to achieve the target of proficient security control. A distributed multimedia management system named DMMManager (Distributed MultiMedia Manager) is developed with the proposed framework DEMUR; to support multimedia capturing, analysis, retrieval, authoring and presentation in one single framework.
Resumo:
After the end of the Cold War, democratization and good governance became the organizing concepts for activities of the United Nations, regional organizations and states in the fields of peace, development and security. How can this increasing interest in democratization and its connection with international security be explained? This dissertation applies the theoretical tools developed by Michel Foucault in his discussions of disciplinarity and government to the analysis of the United Nations debate on democracy in the 1990s, and of two United Nations pro-democracy peacekeeping operations and their aftermath: the United Nations interventions in Haiti and Croatia. It probes “how” certain techniques of power came into being and describes their effects, using as data the texts that elaborate the United Nations understanding of democracy and the texts that constitute peacekeeping. ^ In the face of the proliferation of unpredictable threats in the last decades of the twentieth century a new form of international power emerged. Order in the international arena increasingly was maintained through activities aimed at reducing risk and increasing predictability through the normalization of “rogue” states. The dissertation shows that in the context of these activities, which included but were not limited to UN peacekeeping, normality was identified with democracy, non-democratic regimes with international threats, and democratization with international security. “Good governance” doctrines translated the political debate on democracy into the technical language of functioning state institutions. International organizations adopted good governance as the framework that made democratization a universal task within the reach of their expertise. In Haiti, the United Nations engaged in efforts to transform punishment institutions (the judiciary, police and the prison) into disciplined and disciplinary machines. In Croatia, agreements signed in the context of peacekeeping established in detail the rules of functioning of administrations and the monitoring mechanisms for their implementation. However, in Haiti, the institutions promoted were not sustainable. And in Croatia reforms are stalled by lack of consensus. ^ This dissertation puts efforts to bring about democracy through peacekeeping in the context of a specific modality of power and suggests caution in engaging in universal normalizing endeavors. ^
Resumo:
In a post-Cold War, post-9/11 world, the advent of US global supremacy resulted in the installation, perpetuation, and dissemination of an Absolutist Security Agenda (hereinafter, ASA). The US ASA explicitly and aggressively articulates and equates US national security interests with the security of all states in the international system, and replaced the bipolar, Cold War framework that defined international affairs from 1945-1992. Since the collapse of the USSR and the 11 September 2001 terrorist attacks, the US has unilaterally defined, implemented, and managed systemic security policy. The US ASA is indicative of a systemic category of knowledge (security) anchored in variegated conceptual and material components, such as morality, philosophy, and political rubrics. The US ASA is based on a logic that involves the following security components: (1) hyper militarization, (2) intimidation,(3) coercion, (4) criminalization, (5) panoptic surveillance, (6) plenary security measures, and (7) unabashed US interference in the domestic affairs of select states. Such interference has produced destabilizing tensions and conflicts that have, in turn, produced resistance, revolutions, proliferation, cults of personality, and militarization. This is the case because the US ASA rests on the notion that the international system of states is an extension, instrument of US power, rather than a system and/or society of states comprised of functionally sovereign entities. To analyze the US ASA, this study utilizes: (1) official government statements, legal doctrines, treaties, and policies pertaining to US foreign policy; (2) militarization rationales, budgets, and expenditures; and (3) case studies of rogue states. The data used in this study are drawn from information that is publicly available (academic journals, think-tank publications, government publications, and information provided by international organizations). The data supports the contention that global security is effectuated via a discrete set of hegemonic/imperialistic US values and interests, finding empirical expression in legal acts (USA Patriot ACT 2001) and the concept of rogue states. Rogue states, therefore, provide test cases to clarify the breadth, depth, and consequentialness of the US ASA in world affairs vis-à-vis the relationship between US security and global security.
Resumo:
Recent studies on the economic status of women in Miami-Dade County (MDC) reveal an alarming rate of economic insecurity and significant obstacles for women to achieve economic security. Consistent barriers to women's economic security affect not only the health and wellbeing of women and their families, but also economic prospects for the community. A key study reveals in Miami-Dade County, "Thirty-nine percent of single female-headed families with at least one child are living at or below the federal poverty level" and "over half of working women do not earn adequate income to cover their basic necessities" (Brion 2009, 1). Moreover, conventional measures of poverty do not adequately capture women's struggles to support themselves and their families, nor do they document the numbers of women seeking basic self-sufficiency. Even though there is lack of accurate data on women in the county, which is a critical problem, there is also a dearth of social science research on existing efforts to enhance women's economic security in Miami-Dade County. My research contributes to closing the information gap by examining the characteristics and strategies of women-led community development organizations (CDOs) in MDC, working to address women's economic insecurity. The research is informed by a framework developed by Marilyn Gittell, who pioneered an approach to study women-led CDOs in the United States. On the basis of research in nine U.S. cities, she concluded that women-led groups increased community participation and "by creating community networks and civic action, they represent a model for community development efforts" (Gittell, et al. 2000, 123). My study documents the strategies and networks of women-led CDOs in MDC that prioritize women's economic security. Their strategies are especially important during these times of economic recession and government reductions in funding towards social services. The focus of the research is women-led CDOs that work to improve social services access, economic opportunity, civic participation and capacity, and women's rights. Although many women-led CDOs prioritize building social infrastructures that promote change, inequalities in economic and political status for women without economic security remain a challenge (Young 2004). My research supports previous studies by Gittell, et al., finding that women-led CDOs in Miami-Dade County have key characteristics of a model of community development efforts that use networking and collaboration to strengthen their broad, integrated approach. The resulting community partnerships, coupled with participation by constituents in the development process, build a foundation to influence policy decisions for social change. In addition, my findings show that women-led CDOs in Miami-Dade County have a major focus on alleviating poverty and economic insecurity, particularly that of women. Finally, it was found that a majority of the five organizations network transnationally, using lessons learned to inform their work of expanding the agency of their constituents and placing the economic empowerment of women as central in the process of family and community development.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
In a post-Cold War, post-9/11 world, the advent of US global supremacy resulted in the installation, perpetuation, and dissemination of an Absolutist Security Agenda (hereinafter, ASA). The US ASA explicitly and aggressively articulates and equates US national security interests with the security of all states in the international system, and replaced the bipolar, Cold War framework that defined international affairs from 1945-1992. Since the collapse of the USSR and the 11 September 2001 terrorist attacks, the US has unilaterally defined, implemented, and managed systemic security policy. The US ASA is indicative of a systemic category of knowledge (security) anchored in variegated conceptual and material components, such as morality, philosophy, and political rubrics. The US ASA is based on a logic that involves the following security components: 1., hyper militarization, 2., intimidation, 3., coercion, 4., criminalization, 5., panoptic surveillance, 6., plenary security measures, and 7., unabashed US interference in the domestic affairs of select states. Such interference has produced destabilizing tensions and conflicts that have, in turn, produced resistance, revolutions, proliferation, cults of personality, and militarization. This is the case because the US ASA rests on the notion that the international system of states is an extension, instrument of US power, rather than a system and/or society of states comprised of functionally sovereign entities. To analyze the US ASA, this study utilizes: 1., official government statements, legal doctrines, treaties, and policies pertaining to US foreign policy; 2., militarization rationales, budgets, and expenditures; and 3., case studies of rogue states. The data used in this study are drawn from information that is publicly available (academic journals, think-tank publications, government publications, and information provided by international organizations). The data supports the contention that global security is effectuated via a discrete set of hegemonic/imperialistic US values and interests, finding empirical expression in legal acts (USA Patriot ACT 2001) and the concept of rogue states. Rogue states, therefore, provide test cases to clarify the breadth, depth, and consequentialness of the US ASA in world affairs vis-a-vis the relationship between US security and global security.
Resumo:
Disasters are complex events characterized by damage to key infrastructure and population displacements into disaster shelters. Assessing the living environment in shelters during disasters is a crucial health security concern. Until now, jurisdictional knowledge and preparedness on those assessment methods, or deficiencies found in shelters is limited. A cross-sectional survey (STUSA survey) ascertained knowledge and preparedness for those assessments in all 50 states, DC, and 5 US territories. Descriptive analysis of overall knowledge and preparedness was performed. Fisher’s exact statistics analyzed differences between two groups: jurisdiction type and population size. Two logistic regression models analyzed earthquakes and hurricane risks as predictors of knowledge and preparedness. A convenience sample of state shelter assessments records (n=116) was analyzed to describe environmental health deficiencies found during selected events. Overall, 55 (98%) of jurisdictions responded (states and territories) and appeared to be knowledgeable of these assessments (states 92%, territories 100%, p = 1.000), and engaged in disaster planning with shelter partners (states 96%, territories 83%, p = 0.564). Few had shelter assessment procedures (states 53%, territories 50%, p = 1.000); or training in disaster shelter assessments (states 41%, 60% territories, p = 0.638). Knowledge or preparedness was not predicted by disaster risks, population size, and jurisdiction type in neither model. Knowledge: hurricane (Adjusted OR 0.69, 95% C.I. 0.06-7.88); earthquake (OR 0.82, 95% C.I. 0.17-4.06); and both risks (OR 1.44, 95% C.I. 0.24-8.63); preparedness model: hurricane (OR 1.91, 95% C.I. 0.06-20.69); earthquake (OR 0.47, 95% C.I. 0.7-3.17); and both risks (OR 0.50, 95% C.I. 0.06-3.94). Environmental health deficiencies documented in shelter assessments occurred mostly in: sanitation (30%); facility (17%); food (15%); and sleeping areas (12%); and during ice storms and tornadoes. More research is needed in the area of environmental health assessments of disaster shelters, particularly, in those areas that may provide better insight into the living environment of all shelter occupants and potential effects in disaster morbidity and mortality. Also, to evaluate the effectiveness and usefulness of these assessments methods and the data available on environmental health deficiencies in risk management to protect those at greater risk in shelter facilities during disasters.
Resumo:
To explore the feasibility of processing Compact Muon Solenoid (CMS) analysis jobs across the wide area network, the FIU CMS Tier-3 center and the Florida CMS Tier-2 center designed a remote data access strategy. A Kerberized Lustre test bed was installed at the Tier-2 with the design to provide storage resources to private-facing worker nodes at the Tier-3. However, the Kerberos security layer is not capable of authenticating resources behind a private network. As a remedy, an xrootd server on a public-facing node at the Tier-3 was installed to export the file system to the private-facing worker nodes. We report the performance of CMS analysis jobs processed by the Tier-3 worker nodes accessing data from a Kerberized Lustre file. The processing performance of this configuration is benchmarked against a direct connection to the Lustre file system, and separately, where the xrootd server is near the Lustre file system.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.