28 resultados para Data recovery (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examines evolving issues in applied computer science and applies economic and business analyses as well. There are two main areas. The first is internetwork communications as embodied by the Internet. The goal of the research is to devise an efficient pricing, prioritization, and incentivization plan that could be realistically implemented on the existing infrastructure. Criteria include practical and economic efficiency, and proper incentives for both users and providers. Background information on the evolution and functional operation of the Internet is given, and relevant literature is surveyed and analyzed. Economic analysis is performed on the incentive implications of the current pricing structure and organization. The problems are identified, and minimally disruptive solutions are proposed for all levels of implementation to the lowest level protocol. Practical issues are considered and performance analyses are done. The second area of research is mass market software engineering, and how this differs from classical software engineering. Software life-cycle revenues are analyzed and software pricing and timing implications are derived. A profit maximizing methodology is developed to select or defer the development of software features for inclusion in a given release. An iterative model of the stages of the software development process is developed, taking into account new communications capabilities as well as profitability. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because some Web users will be able to design a template to visualize information from scratch, while other users need to automatically visualize information by changing some parameters, providing different levels of customization of the information is a desirable goal. Our system allows the automatic generation of visualizations given the semantics of the data, and the static or pre-specified visualization by creating an interface language. We address information visualization taking into consideration the Web, where the presentation of the retrieved information is a challenge. ^ We provide a model to narrow the gap between the user's way of expressing queries and database manipulation languages (SQL) without changing the system itself thus improving the query specification process. We develop a Web interface model that is integrated with the HTML language to create a powerful language that facilitates the construction of Web-based database reports. ^ As opposed to other papers, this model offers a new way of exploring databases focusing on providing Web connectivity to databases with minimal or no result buffering, formatting, or extra programming. We describe how to easily connect the database to the Web. In addition, we offer an enhanced way on viewing and exploring the contents of a database, allowing users to customize their views depending on the contents and the structure of the data. Current database front-ends typically attempt to display the database objects in a flat view making it difficult for users to grasp the contents and the structure of their result. Our model narrows the gap between databases and the Web. ^ The overall objective of this research is to construct a model that accesses different databases easily across the net and generates SQL, forms, and reports across all platforms without requiring the developer to code a complex application. This increases the speed of development. In addition, using only the Web browsers, the end-user can retrieve data from databases remotely to make necessary modifications and manipulations of data using the Web formatted forms and reports, independent of the platform, without having to open different applications, or learn to use anything but their Web browser. We introduce a strategic method to generate and construct SQL queries, enabling inexperienced users that are not well exposed to the SQL world to build syntactically and semantically a valid SQL query and to understand the retrieved data. The generated SQL query will be validated against the database schema to ensure harmless and efficient SQL execution. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods for accessing data on the Web have been the focus of active research over the past few years. In this thesis we propose a method for representing Web sites as data sources. We designed a Data Extractor data retrieval solution that allows us to define queries to Web sites and process resulting data sets. Data Extractor is being integrated into the MSemODB heterogeneous database management system. With its help database queries can be distributed over both local and Web data sources within MSemODB framework. ^ Data Extractor treats Web sites as data sources, controlling query execution and data retrieval. It works as an intermediary between the applications and the sites. Data Extractor utilizes a twofold “custom wrapper” approach for information retrieval. Wrappers for the majority of sites are easily built using a powerful and expressive scripting language, while complex cases are processed using Java-based wrappers that utilize specially designed library of data retrieval, parsing and Web access routines. In addition to wrapper development we thoroughly investigate issues associated with Web site selection, analysis and processing. ^ Data Extractor is designed to act as a data retrieval server, as well as an embedded data retrieval solution. We also use it to create mobile agents that are shipped over the Internet to the client's computer to perform data retrieval on behalf of the user. This approach allows Data Extractor to distribute and scale well. ^ This study confirms feasibility of building custom wrappers for Web sites. This approach provides accuracy of data retrieval, and power and flexibility in handling of complex cases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The virtual quadrilateral is the coalescence of novel data structures that reduces the storage requirements of spatial data without jeopardizing the quality and operability of the inherent information. The data representative of the observed area is parsed to ascertain the necessary contiguous measures that, when contained, implicitly define a quadrilateral. The virtual quadrilateral then represents a geolocated area of the observed space where all of the measures are the same. The area, contoured as a rectangle, is pseudo-delimited by the opposite coordinates of the bounding area. Once defined, the virtual quadrilateral is representative of an area in the observed space and is represented in a database by the attributes of its bounding coordinates and measure of its contiguous space. Virtual quadrilaterals have been found to ensure a lossless reduction of the physical storage, maintain the implied features of the data, facilitate the rapid retrieval of vast amount of the represented spatial data and accommodate complex queries. The methods presented herein demonstrate that virtual quadrilaterals are created quite easily, are stable and versatile objects in a database and have proven to be beneficial to exigent spatial data applications such as geographic information systems. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research presents several components encompassing the scope of the objective of Data Partitioning and Replication Management in Distributed GIS Database. Modern Geographic Information Systems (GIS) databases are often large and complicated. Therefore data partitioning and replication management problems need to be addresses in development of an efficient and scalable solution. ^ Part of the research is to study the patterns of geographical raster data processing and to propose the algorithms to improve availability of such data. These algorithms and approaches are targeting granularity of geographic data objects as well as data partitioning in geographic databases to achieve high data availability and Quality of Service(QoS) considering distributed data delivery and processing. To achieve this goal a dynamic, real-time approach for mosaicking digital images of different temporal and spatial characteristics into tiles is proposed. This dynamic approach reuses digital images upon demand and generates mosaicked tiles only for the required region according to user's requirements such as resolution, temporal range, and target bands to reduce redundancy in storage and to utilize available computing and storage resources more efficiently. ^ Another part of the research pursued methods for efficient acquiring of GIS data from external heterogeneous databases and Web services as well as end-user GIS data delivery enhancements, automation and 3D virtual reality presentation. ^ There are vast numbers of computing, network, and storage resources idling or not fully utilized available on the Internet. Proposed "Crawling Distributed Operating System "(CDOS) approach employs such resources and creates benefits for the hosts that lend their CPU, network, and storage resources to be used in GIS database context. ^ The results of this dissertation demonstrate effective ways to develop a highly scalable GIS database. The approach developed in this dissertation has resulted in creation of TerraFly GIS database that is used by US government, researchers, and general public to facilitate Web access to remotely-sensed imagery and GIS vector information. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the proliferation of multimedia data and ever-growing requests for multimedia applications, there is an increasing need for efficient and effective indexing, storage and retrieval of multimedia data, such as graphics, images, animation, video, audio and text. Due to the special characteristics of the multimedia data, the Multimedia Database management Systems (MMDBMSs) have emerged and attracted great research attention in recent years. Though much research effort has been devoted to this area, it is still far from maturity and there exist many open issues. In this dissertation, with the focus of addressing three of the essential challenges in developing the MMDBMS, namely, semantic gap, perception subjectivity and data organization, a systematic and integrated framework is proposed with video database and image database serving as the testbed. In particular, the framework addresses these challenges separately yet coherently from three main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In terms of multimedia data representation, the key to address the semantic gap issue is to intelligently and automatically model the mid-level representation and/or semi-semantic descriptors besides the extraction of the low-level media features. The data organization challenge is mainly addressed by the aspect of media indexing where various levels of indexing are required to support the diverse query requirements. In particular, the focus of this study is to facilitate the high-level video indexing by proposing a multimodal event mining framework associated with temporal knowledge discovery approaches. With respect to the perception subjectivity issue, advanced techniques are proposed to support users' interaction and to effectively model users' perception from the feedback at both the image-level and object-level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the internet has grown exponentially, and become more complex. This increased complexity potentially introduces more network-level instability. But for any end-to-end internet connection, maintaining the connection's throughput and reliability at a certain level is very important. This is because it can directly affect the connection's normal operation. Therefore, a challenging research task is to improve a network's connection performance by optimizing its throughput and reliability. This dissertation proposed an efficient and reliable transport layer protocol (called concurrent TCP (cTCP)), an extension of the current TCP protocol, to optimize end-to-end connection throughput and enhance end-to-end connection fault tolerance. The proposed cTCP protocol could aggregate multiple paths' bandwidth by supporting concurrent data transfer (CDT) on a single connection. Here concurrent data transfer was defined as the concurrent transfer of data from local hosts to foreign hosts via two or more end-to-end paths. An RTT-Based CDT mechanism, which was based on a path's RTT (Round Trip Time) to optimize CDT performance, was developed for the proposed cTCP protocol. This mechanism primarily included an RTT-Based load distribution and path management scheme, which was used to optimize connections' throughput and reliability. A congestion control and retransmission policy based on RTT was also provided. According to experiment results, under different network conditions, our RTT-Based CDT mechanism could acquire good CDT performance. Finally a CWND-Based CDT mechanism, which was based on a path's CWND (Congestion Window), to optimize CDT performance was introduced. This mechanism primarily included: a CWND-Based load allocation scheme, which assigned corresponding data to paths based on their CWND to achieve aggregate bandwidth; a CWND-Based path management, which was used to optimize connections' fault tolerance; and a congestion control and retransmission management policy, which was similar to regular TCP in its separate path handling. According to corresponding experiment results, this mechanism could acquire near-optimal CDT performance under different network conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graph-structured databases are widely prevalent, and the problem of effective search and retrieval from such graphs has been receiving much attention recently. For example, the Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as a graph where tuples are modeled as vertices connected via foreign-key relationships. Keyword search querying has emerged as one of the most effective paradigms for information discovery, especially over HTML documents in the World Wide Web. One of the key advantages of keyword search querying is its simplicity—users do not have to learn a complex query language, and can issue queries without any prior knowledge about the structure of the underlying data. The purpose of this dissertation was to develop techniques for user-friendly, high quality and efficient searching of graph structured databases. Several ranked search methods on data graphs have been studied in the recent years. Given a top-k keyword search query on a graph and some ranking criteria, a keyword proximity search finds the top-k answers where each answer is a substructure of the graph containing all query keywords, which illustrates the relationship between the keyword present in the graph. We applied keyword proximity search on the web and the page graph of web documents to find top-k answers that satisfy user’s information need and increase user satisfaction. Another effective ranking mechanism applied on data graphs is the authority flow based ranking mechanism. Given a top- k keyword search query on a graph, an authority-flow based search finds the top-k answers where each answer is a node in the graph ranked according to its relevance and importance to the query. We developed techniques that improved the authority flow based search on data graphs by creating a framework to explain and reformulate them taking in to consideration user preferences and feedback. We also applied the proposed graph search techniques for Information Discovery over biological databases. Our algorithms were experimentally evaluated for performance and quality. The quality of our method was compared to current approaches by using user surveys.