16 resultados para Biology, Molecular|Biology, Cell|Biology, Microbiology
Resumo:
Polyketides derived from dinoflagellates are among the most complex and unique structures identified to date. The carbon framework of all polyketides is assembled by a polyketide synthase (PKS). No studies of the biosynthesis of dinoflagellate derived polyketides at the genomic level have been reported to date. Nine strains representing seven different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKS) by PCR and RT-PCR. Seven of the nine strains yielded products that were homologous with known and putative type I polyketide synthases. In each case, the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S rRNA gene. However, residual phylogenetic signals, resistance to methylation sensitive restriction enzymes and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes. ^ A more detailed analysis of Karenia brevis, a toxic marine dinoflagellate endemic to the Gulf of Mexico, also supports the hypothesis that dinoflagellates have polyketide synthase genes. Blooms of this harmful alga cause fish kills, marine mammal mortalities and neurotoxic shellfish poisonings. These harmful effects are attributed to a suite of polyketide secondary metabolites known as the brevetoxins. PKS encoding genes amplified from K. brevis culture were found to be similar to PKS genes from the closely related protist, Cryptosporidium parvum. This suggested that these genes originate from the dinoflagellate. However, K. brevis has not been grown axenically. The associated bacteria might be the source of the toxins or the PKS genes. This dissertation reports the localization of these PKS encoding genes by a combination of flow cytometry/PCR and fluorescence in situ hybridization (FISH). Two genes localized exclusively to K. brevis cells while a third localized to both K. brevis and associated bacteria. While these genes have not yet been linked to toxin production, the work describes the first definitive evidence of resident PKS genes in any dinoflagellate. ^
Resumo:
Antibiotic resistance, production of alginate and virulence factors, and altered host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection. Failure of antibiotic therapy has been attributed to the emergence of P. aeruginosa strains that produce β-lactamase constitutively. In Enterobacteriaceae, β-lactamase induction involves four genes with known functions: ampC, ampR, ampD, and ampG, encoding the enzyme, transcriptional regulator, amidase and permease, respectively. In addition to all these amp genes, P. aeruginosa possesses two ampG paralogs, designated ampG and ampP. In this study, P. aeruginosa ampC, ampR, ampG and ampP were analyzed. Inactivation of ampC in the prototypic PAO1 failed to abolish the β-lactamase activity leading to the discovery of P. aeruginosa oxacillinase PoxB. Cloning and expression of poxB in Escherichia coli confers β-lactam resistance. Both AmpC and PoxB contribute to P. aeruginosa resistance against a wide spectrum of β-lactam antibiotics. The expression of PoxB and AmpC is regulated by a LysR-type transcriptional regulator AmpR that up-regulates AmpC but down-regulates PoxB activities. Analyses of P. aeruginosa ampR mutant demonstrate that AmpR is a global regulator that modulates the expressions of Las and Rhl quorum sensing (QS) systems, and the production of pyocyanin, LasA protease and LasB elastase. Introduction of the ampR mutation into an alginate-producing strain reveals the presence of a complex co-regulatory network between antibiotic resistance, QS alginate and other virulence factor production. Using phoA and lacZ protein fusion analyses, AmpR, AmpG and AmpP were localized to the inner membrane with one, 16 and 10 transmembrane helices, respectively. AmpR has a cytoplasmic DNA-binding and a periplasmic substrate binding domains. AmpG and AmpP are essential for the maximal expression of β-lactamase. Analysis of the murein breakdown products suggests that AmpG exports UDP-N-acetylmuramyl-L-alanine-γ-D-glutamate-meso-diaminopimelic acid-D-alanine-D-alanine (UDP-MurNAc-pentapeptide), the corepressor of AmpR, whereas AmpP imports N-acetylglucosaminyl-beta-1,4-anhydro-N-acetylmuramic acid-Ala-γ-D-Glu-meso-diaminopimelic acid (GlcNAc-anhMurNAc-tripeptide) and GlcNAc-anhMurNAc-pentapeptide, the co-inducers of AmpR. This study reveals a complex interaction between the Amp proteins and murein breakdown products involved in P. aeruginosa β-lactamase induction. In summary, this dissertation takes us a little closer to understanding the P. aeruginosa complex co-regulatory mechanism in the development of β-lactam resistance and establishment of chronic infection. ^
Resumo:
The relationship between reef corals and endosymbiotic dinoflagellates is fundamental to the existence of coral reefs. To evaluate the fidelity of coral-Symbiodinium mutualisms, corals maintained in aquaria for years were analyzed by denaturant gradient gel electrophoresis (DGGE). Comparing Symbiodinium populations of captive aquarium colonies with known associations in nature is a practical way of examining partner flexibility. The finding of "normal" symbiont populations in corals existing under highly variable conditions supports the premise that most coral colonies possess stable associations. High sensitivity real-time PCR (rtPCR) was used to evaluate background populations of the putatively stress-tolerant Symbiodinium D in reef corals of the Caribbean. Analyses of samples collected during periods of environmental stability indicate the ability of Symbiodinium D to associate with a wider diversity of host taxa than previously recognized. To gain a broader perspective with regard to the ecology of Symbiodinium D1a, rtPCR and DGGE were used to evaluate the symbiont populations of reef corals from Barbados before and after the 2005 mass coral bleaching. Background populations were observed in 56% of the host genera prior to observations of bleaching. These findings indicate that 'stress', not 'bleaching', caused the displacement of 'natural' symbiont population and the opportunistic proliferation of D1a in many host taxa. Of the 12 host taxa monitored before and after the bleaching event, there was a 40% increase in colonies hosting Symbiodinium D1a. Together, these studies elucidate the mechanism responsible for recent observations reporting the emergence of Symbiodinium D following thermal disturbances. These observations are now most easily explained as the disproportionate growth of existing in hospite symbiont populations, rather than novel symbiont acquisition subsequent to bleaching. To evaluate the comparative "fitness" of corals able to host multiple symbiont types, rates of calcification were measured in P. verrucosa hosting either Symbiodinium C1b-c or D1 at elevated temperature. Rates of calcification decreased significantly for both host-symbiont combinations, but differences attributable to symbiont composition were not detected. This research improves our knowledge of the symbiosis biology and ecology of reef corals and contributes information necessary to most accurately predict the response of these ecosystems to global climate changes.
Resumo:
In many vertebrate and invertebrate species mediators of innate immunity include antimicrobial peptides (AMPs) such as peptide fragments of histones and other proteins with previously ascribed different functions. Shark AMPs have not been described and this research examines the antibacterial activity of nurse shark (Ginglymostoma cirratum) peripheral blood leukocyte lysates. Screening of lysates prepared by homogenizing unstimulated peripheral blood leukocytes identified muramidase (lysozyme-like) and non-muramidase antibacterial activity. Lysates were tested for lysozyme using the lysoplate assays, and antibacterial (AB) activity was assayed for by a microdilution growth assay that was developed using Planococcus citreus as the target bacterium. Fractionation of crude lysates by ion exchange and affinity chromatography was followed by a combination of SDS-PAGE with LC/MS-MS and/or N-terminal sequence analysis of low molecular weight protein bands (<20 kDa). This yielded several peptides with amino acid sequence similarity to lysozyme, ubiquitin, hemoglobin, human histones H2A, H2B and H4 and to antibacterial histone fragments of the catfish and the Asian toad. Not all peptide sequences corresponded to peptides potentially antibacterial. The correlation of a specific protein band in active lysate fractions was accomplished by employing the acid-urea gel overlay assays in which AB activity was seen as zones of growth inhibition on a lawn of P. citreus at a position corresponding to that of the putative AB protein band. This study is the first to describe putative AMPs in the shark and their potential role in innate immunity.^
Resumo:
Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.^
Resumo:
Black band disease of corals consists of a microbial community dominated by the cyanobacteriurn Phormidium corallyticum. The disease primarily affects reef-framework coral species, Active black band disease continually opens up new substrate in reef environments by destroying coral tissue as the disease line advances across the surface of infected colonies. A field study was carried out to determine the abundance and distribution of black band disease on the reef building corals in the Florida Keys. During July of 1992 and 1993, up to 0.72% of coral colonies were infected with black band disease. Analysis of the distribution showed that the disease was clumped. Seasonal patters varied, with some coral colonies infected year round, others exhibiting reinfection from summer 1992 to summer 1993, and some colonies infected for one year only. Statistical analysis of black band disease incidence in relation to various environmental parameters revealed that black band disease was associated with relatively shallow water depths, higher temperatures, elevated nitrite levels, and decreased ortho-phosphate levels. Additional field studies determined recovery of scleractinian coral colonies damaged or killed through the activities of black band disease over a five-year period. These studies determined if the newly exposed substrate was recolonized through scleractinian recruitment, if there was overgrowth of the damaged areas by the formerly diseased colony, or if coral tissue destruction continued after the cessation of black band disease activity. Tissue loss continued on all coral colonies with only one colony exhibiting new tissue growth. The majority of recolonization was by non-reef-framework corals and octocorallians, limited recruitment by framework species was observed. Physiological studies of P. corallyticum were carried out to investigate the photosynthetic capacity of this cyanobacterium, and to determine if this species has the ability to fix dinitrogen. The results of this research demonstrated that P. corallyticum reaches maximum photosynthetic rates at very low light intensities (27.9 μE/m/sec), and that P. corallyticum is able to carry out oxygenic photosynthesis in the presence of sulfide, an ability that is uncommon in prokaryotic organisms. ^
Resumo:
Mechanistically and structurally chloroperoxidase (CPO) occupies a unique niche among heme containing enzymes. Chloroperoxidase catalyzes a broad range of reactions, such as oxidation of organic substrates, dismutation of hydrogen peroxide, and mono-oxygenation of organic molecules. To expand the synthetic utility of CPO and to appreciate the important interactions that lead to CPO’s exceptional properties, a site-directed mutagenesis study was undertaken. ^ Recombinant CPO and CPO mutants were heterologously expressed in Aspergillus niger. The overall protein structure was almost the same as that of wild type CPO, as determined by UV-vis, NMR and CD spectroscopies. Phenylalanine103, which was proposed to regulate substrate access to the active site by restricting the size of substrates and to control CPO’s enantioselectivity, was mutated to Ala. The ligand binding affinity and most importantly the catalytic activity of F103A was dramatically different from wild type CPO. The mutation essentially eliminated the chlorination and dismutation activities but enhanced, 4-10 fold, the epoxidation, peroxidation, and N-demethylation activities. As expected, the F103A mutant displayed dramatically improved epoxidation activity for larger, more branched styrene derivatives. Furthermore, F103A showed a distinctive enantioselectivity profile: losing enantioselectivity to styrene and cis-β-methylstyrene; having a different configuration preference on α-methylstyrene; showing higher enantioselectivites and conversion rates on larger, more branched substrates. Our results show that F103 acts as a switch box that controls the catalytic activity, substrate specificity, and product enantioselectivity of CPO. Given that no other mutant of CPO has displayed distinct properties, the results with F103A are dramatic. ^ The diverse catalytic activity of CPO has long been attributed to the presence of the proximal thiolate ligand. Surprisingly, a recent report on a C29H mutant suggested otherwise. A new CPO triple mutant C29H/C79H/C87H was prepared, in which all the cysteines were replaced by histidine to eliminate the possibility of cysteine coordinating to the heme. No active form protein was isolated, although, successful transformation and transcription was confirmed. The result suggests that Cys79 and Cys87 are critical to maintaining the structural scaffold of CPO. ^ In vitro biodegradation of nanotubes by CPO were examined by scanning electron microscope method, but little oxidation was observed. ^
Resumo:
The primary goal of this dissertation is the study of patterns of viral evolution inferred from serially-sampled sequence data, i.e., sequence data obtained from strains isolated at consecutive time points from a single patient or host. RNA viral populations have an extremely high genetic variability, largely due to their astronomical population sizes within host systems, high replication rate, and short generation time. It is this aspect of their evolution that demands special attention and a different approach when studying the evolutionary relationships of serially-sampled sequence data. New methods that analyze serially-sampled data were developed shortly after a groundbreaking HIV-1 study of several patients from which viruses were isolated at recurring intervals over a period of 10 or more years. These methods assume a tree-like evolutionary model, while many RNA viruses have the capacity to exchange genetic material with one another using a process called recombination. ^ A genealogy involving recombination is best described by a network structure. A more general approach was implemented in a new computational tool, Sliding MinPD, one that is mindful of the sampling times of the input sequences and that reconstructs the viral evolutionary relationships in the form of a network structure with implicit representations of recombination events. The underlying network organization reveals unique patterns of viral evolution and could help explain the emergence of disease-associated mutants and drug-resistant strains, with implications for patient prognosis and treatment strategies. In order to comprehensively test the developed methods and to carry out comparison studies with other methods, synthetic data sets are critical. Therefore, appropriate sequence generators were also developed to simulate the evolution of serially-sampled recombinant viruses, new and more through evaluation criteria for recombination detection methods were established, and three major comparison studies were performed. The newly developed tools were also applied to "real" HIV-1 sequence data and it was shown that the results represented within an evolutionary network structure can be interpreted in biologically meaningful ways. ^
Resumo:
Rudraksha, used throughout India and Southeast Asia in religious jewellery, is the stony endocarp of a tree distributed from northern Australia to southern Nepal. This article summarizes its biology, particularly recent research on the remarkable fruit colour. The iridescent blue colour is caused by a remarkable structure an 'iridosome'. It is secreted by the epidermal cell, and is located above the plasmalemma and beneath the adaxial wall. Cellulosic layers within the iridosome constructively interfere with blue wavelengths, causing an intense colour production at 439 nm. This colour persists in senescing fruits and may enhance their dispersal. The transparency of the cuticle at longer wavelengths allows photosynthesis to occur in the fleshy green exocarp tissue, enhancing the carbon balance of the tree. More research will certainly reveal the evolution of this remarkable phenomenon, as well as the origins of the rudraksha's cultural use.