3 resultados para zinco

em Universidade Federal de Uberlândia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents the development of voltammetric methods to zinc determination in multivitamin commercial samples, talc, and art materials for painting (soft pastel) combining an alkaline extraction with 1.0 mol L-1 NaOH aqueous solution and bismuth modified electrodes. Two electrodes were used to zinc quantification in the samples, bismuth film electrode (BiFE) plated in situ onto glassy carbon and carbon paste electrode chemically modified with strongly acidic ion exchange resin Amberlite® IR 120 and bismuth nanostructures (EPCAmbBi). It was verified that the best concentration of Bi3+ for Bi film deposition onto glassy carbon was 4.0 μmol L-1 using an 0.1 mol L-1 acetate buffer aqueous solution (pH = 4.5) as supporting electrolyte. The best condition to formation of Bi nanostructures in the EPC modified with 10 % Amberlite® IR 120 was the use of 30 s to pre-concentration (open circuit) in 0.5 mmol L-1 Bi3+ aqueous solution (pH 5.5) prepared with supporting electrolyte solution. The obtained analytical curve for Zn2+ using BiFE presented linear range from 0.5 to 5.0 μmol L-1, the limit of detection (LD) was 41 nmol L-1. For EPCAmbBi only one linear range was observed for the analytical curve varying the Zn2+ concentration from 0.05 to 8.2 μmol L-1, LD obtained in this curve it was equal to 10 nmol L-1. The EPCAmbBi presented the most intense and sharp anodic stripping peaks for Zn2+ presenting, therefore, a better voltammetric profile, with sensitivity higher than obtained with the BiFE. Moreover, the EPCAmbBi presented a LD lower than that obtained with the BiFE. Alkaline extraction was an efficient sample pretreatment to extract Zn2+ from solid samples, besides that, this procedure was less susceptible to interferences from Cu2+, since it remains at extracting vessel as insoluble Cu(OH)2. The combination of alkaline extraction with the EPCAmbBi is a simple, fast, efficient and low cost for the zinc determination in pharmaceutical formulations and art materials for painting (soft pastel) samples, which can be employed as a low-cost alternative method to the atomic absorption spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the oxidation and mineralization of paracetamol, based in an advanced oxidative process promoted by heterogeneous photocatalysis, was evaluated. The action of two photocatalysts (titanium dioxide, and a composite based on the association between titanium dioxide and zinc phthalocyanine dye) was studied. First of all, experiments in laboratory scale were performed using as radiation font a 400 W high pressure mercury lamp. The mineralization of paracetamol, promoted by both photocatalysts, was evaluated working with 4L of solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. To find the best experimental conditions, the influence of hydrogen peroxide concentration and pH was evaluated for the reactions. The best results for the reactions in laboratory scale was obtained using 33,00 mg L-1 of hydrogen peroxide in natural pH (6,80). Under these conditions, 100% oxidation was reached in just 40 minutes of reaction using TiO2 P25, while the mineralization was 78%. Using the composite, the mineralization was 63% in 2 hours of reaction and a oxidation of almost 100% was reached after 60 minutes. A CPC reactor (compound parabolic concentrator) was employed in the expanded work scale, using the sun as irradiation source. In this case the experiments were performed using 50 L of aqueous solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. The assays were done at pH 3,00 and natural pH (6,80). The used concentration of hydrogen peroxide was 33,00 mg L-1, adopted after laboratory scale studies. The reaction at pH 3,00 shows to be more advantageous, since under natural pH (6,80), the use of deionized water was necessary to prepare the solutions, probably because the deleterious action of carbonate ions, known hydroxyl radical scavengers. Using solar irradiation, the reaction mediated by the composite was more efficient when compared with the assays under laboratory scale since the composite presents the advantage of promoting a better use of visible radiation. Under these conditions, the mineralization increased from 40% to 56% under pH 3,00. At natural pH the oxidation occurred more slowly and the mineralization decreased from 56% to 50%. Thus, the use of pH 3,00 will be more interesting in real scale applications, even if it is necessary the pH correction before the discard of the treated effluent to the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mathematical modeling in the simulation of self-purification capacity in lotic environment is an important tool in the planning and management of hydric resources in hydrographic basin scale. It satisfactorily deals with the self-purification process when the coefficients of physical and biochemical processes are calibrated from monitorated water quality data, which was the main focus of this study. The present study was conducted to simulate the behavior of the parameters OD, BOD5, total phosphorus, E. coli, ammonia, nitrite, nitrate and the total metals cadmium, chromium, copper, lead and zinc in the Uberabinha’s lower course (with an approximate annual growth flow between 4-35 m3/s), in a stretch of 19 km downstream of the treated effluent release by the WWTP of the city. The modelings, on the present study, show the importance of constant water quality parameters monitoration over the water course, based on the comparison of the simulations from calibrated coefficients and coefficients obtained in the literature for the period of June until November 2015. After coefficients calibration, there were good adjustments between simulated and measured data for the parameters OD, BOD, Ptotal, ammonia and nitrate and unsatisfactory adjust for the parameters nitrite and E. coli. About the total metals, the adjustments were not satisfactory on the reservoir’s vicinity of the Small Hydropower Plant Martins, due the considerable increase of the bottom sediment in lentic region. The greatest scientific contribution of this study was to calibrate the decay coefficient K and the quantification of the release by the fund S of total metals in watercourse midsize WWTP pollutant load receptor, justified by the lack of studies in the literature about the subject. For the metals cadmium, chromium, copper, lead and zinc, the borderline for K and S calibrated were: 0.0 to 13.0 day-1 and 0.0 to 1.7 g/m3.day; 0.0 to 0.9 day-1 and 0.0 to 7.3 g/m3.day; 0.0 to 25.0 day-1 and 0.0 to 1.8 g/m3.day; 0.0 to 7.0 day-1 and 0.0 to 40.3 g/m3.day; 0.0 to 30.0 day-1 and 0.0 to 70.1 g/m3.day.