2 resultados para weathered diesel oil

em Universidade Federal de Uberlândia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodiesel is a renewable fuel derived from vegetable oils or animal fats, which can be a total or partial substitute for diesel. Since 2005, this fuel was introduced in the Brazilian energy matrix through Law 11.097 that determines the percentage of biodiesel added to diesel oil as well as monitoring the insertion of this fuel in market. The National Agency of Petroleum, Natural Gas and Biofuels (ANP) establish the obligation of adding 7% (v/v) of biodiesel to diesel commercialized in the country, making crucial the analytical control of this content. Therefore, in this study were developed and validated methodologies based on the use of Mid Infrared Spectroscopy (MIR) and Multivariate Calibration by Partial Least Squares (PLS) to quantify the methyl and ethyl biodiesels content of cotton and jatropha in binary blends with diesel at concentration range from 1.00 to 30.00% (v/v), since this is the range specified in standard ABNT NBR 15568. The biodiesels were produced from two routes, using ethanol or methanol, and evaluated according to the parameters: oxidative stability, water content, kinematic viscosity and density, presenting results according to ANP Resolution No. 45/2014. The built PLS models were validated on the basis of ASTM E1655-05 for Infrared Spectroscopy and Multivariate Calibration and ABNT NBR 15568, with satisfactory results due to RMSEP (Root Mean Square Error of Prediction) values below 0.08% (<0.1%), correlation coefficients (R) above 0.9997 and the absence of systematic error (bias). Therefore, the methodologies developed can be a promising alternative in the quality control of this fuel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, it was developed and validated methodologies that were based on the use of Infrared Spectroscopy Mid (MIR) combined with multivariate calibration Square Partial Least (PLS) to quantify adulterants such as soybean oil and residual soybean oil in methyl and ethyl palm biodiesels in the concentration range from 0.25 to 30.00 (%), as well as to determine methyl and ethyl palm biodiesel content in their binary mixtures with diesel in the concentration range from 0.25 to 30.00 (%). The prediction results showed that PLS models constructed are satisfactory. Errors Mean Square Forecast (RMSEP) of adulteration and content determination showed values of 0.2260 (%), with mean error (EM) with values below 1.93 (%). The models also showed a strong correlation between actual and predicted values, staying above 0.99974. No systematic errors were observed, in accordance to ASTM E1655- 05. Thus the built PLS models, may be a promising alternative in the quality control of this fuel for possible adulterations or to content determination.