4 resultados para programa computacional
em Universidade Federal de Uberlândia
Desempenho agronômico, bromatológico e estabilidade fenotípica de sorgo silageiro em Uberlândia - MG
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is a good alternative to be used as silage, especially in places with water scarcity and high temperatures, due to their morphological and physiological characteristics. The appropriate management, as the ideal seeding time, interferes both productivity and the quality of silage. The work was conducted with the objective of evaluating the agronomic and bromatological performance of varieties and hybrids of silage sorghum and their phenotypic stability in two seasons, season and off-season, in the city of Uberlândia, Minas Gerais. The experiments were performed at Capim Branco Experimental Farm of Federal University of Uberlândia (UFU), located in the referred city. There were two sowing dates in the same experimental area, off-season (March to June 2014) and season (November 2014 to March 2015), and the varieties and hybrids were evaluated in both situations. The design was a randomized block with 25 treatments (hybrids and varieties of sorghum) and three replications. Agronomical and bromatological data were subjected to an analysis of variance; averages were grouped by Scott-Knott test at 5% of probability, through Genes computer program; and to estimate the stability, it was opted for Annicchiarico method. The flowering of cultivars, dry matter productivity, plant height, Acid Detergent Fiber (ADF), Neutral Detergent Fiber (NDF) and Crude Protein (CP) are affected by the environment and the variety. Regarding productivity and quality of the fiber, SF11 variety was superior, independent of the rated environment. In relation to the performance stability of dry matter, the varieties SF15, SF11, SF25, PROG 134 IPA, 1141572, 1141570 and 1141562 were highlighted. For the stability of the quality of fibers (FDA and FDN), the variety 1141562 stood out. The environment reduces the expression of characters “days of flowering”, “plant height” and “productivity of dry matter of hybrids”. From the 25 hybrids analyzed for productivity and stability of dry matter performance, seven were highlighted, regardless of the rated environment: Volumax commercial hybrid and experiments 12F39006, 12F39007, 12F37014, 12F39014, 12F38009 and 12F02006.
Resumo:
This study aims to evaluate the uncertainty associated with measurements made by aneroid sphygmomanometer, neonatal electronic balance and electrocautery. Therefore, were performing repeatability tests on all devices for the subsequent execution of normality tests using Shapiro-Wilk; identification of influencing factors that affect the measurement result of each measurement; proposition of mathematical models to calculate the measurement uncertainty associated with measuring evaluated for all equipament and calibration for neonatal electronic balance; evaluation of the measurement uncertainty; and development of a computer program in Java language to systematize the calibration uncertainty of estimates and measurement uncertainty. It was proposed and carried out 23 factorial design for aneroid sphygmomanometer order to investigate the effect of temperature factors, patient and operator and another 32 planning for electrocautery, where it investigated the effects of temperature factors and output electrical power. The expanded uncertainty associated with the measurement of blood pressure significantly reduced the extent of the patient classification tracks. In turn, the expanded uncertainty associated with the mass measurement with neonatal balance indicated a variation of about 1% in the dosage of medication to neonates. Analysis of variance (ANOVA) and the Turkey test indicated significant and indirectly proportional effects of temperature factor in cutting power values and clotting indicated by electrocautery and no significant effect of factors investigated for aneroid sphygmomanometer.
Resumo:
The search for mitigation solutions, with respect to the effects of overvoltages linked to the energization and reclosing maneuvers of transmission lines include a challenging subject with strong impact on the insulation coordination of electrical systems. Although the recognition of classical and commercial proposals to mitigate these phenomena, other possibilities are certainly still worthwhile highlighting and investigations. In this context, the present work is grounded in the exposure of the physical and mathematical foundations of a strategy based on controlled switchings, whose moments to the line reclosing are pre-programmed. The computational evaluation of the effectiveness of the methodology is made using the ATP simulator, which are studies in a typical electrical system subjected to the action of short-circuits fallowed by shutdowns and subsequent reclosing, under the action of technology here focused and lack thereof.
Resumo:
In this work are considered two bidimensional systems, with distints chacacteristcs and applicabilitys. Is studied the adsorption of transition metals (MT) Fe, Co, Mn and Ru in extended defects, formed by graphene grain boundaries. First in pristine graphene The hollow site of carbon hexagon, in pristine graphene, are the most stable for MT adsorption. The Dirac cone in eletronic structure of graphene was manteined with the presence of MT. For the considered grain boundaries the MT has a greater stability for absorption in the grain boundaries sites in comparison with pristine graphene. Through the energy barrier values, are observed diffusion chanels for MT localized on the grain boundaries. This diffusion chanels indicate a possible formation of nanolines of MT in graphene. For the first stage of the nanolines, ate observed a better stability for the system with greater MT concentration, due to MT-MT interactions. Also, due to the magnetic moment of the MT, the nanolines show a magnetization. For the most stable configurations the system are metallics, particularly for Fe the band structure indicates an anisotropic spin current. In a second study, are considereted the retention capacity for metallic contaminants Cd and Hg in clayminerals, kaolinite (KAO) and montmorillonite (MMT). Through the adsorption energies of contaminantes in the clayminerals, was observed a increase in stability with the increase of contaminants concentration, due to the interaction Cd-Cd and Hg-Hg. Also, was observed that KAO has a strong interaction beteween monolayers than MMT. In this sence, for the adsoption process of contaminantes in the natural form of KAO and MMT, the latter has a better retention capacity, due to the small net work for contaminant intercalation. However, when the modification of clayminerals, with molecules that increase the spacing between monolayers, exist a optimal condition, which the contaminant absorption are more stable in KAO system than in MMT. In the Langmuir adsorption model for the clayminerals in the optimal monolayer spacing, the retention capacity for Cd and Hg in KAO system are 21% greater than in MMT system. Also, for the X-ray Absorption Near Edge Spectroscopy (XANES) for the K edge of Cd and Hg, are found a positive shift of absorption edge with the decreasing of monolayer spacing. This result indicates a possible way to determine the concentration of adsorbed contaminats in relation to unabsorbed ones, from the decomposition of experimental XANES in the obteined spectras.