2 resultados para produtividade de grãos
em Universidade Federal de Uberlândia
Resumo:
Nitrogen (N) is one of the major nutrients nutrients absorbed in corn crops, for this reason, nitrogen based fertilizers are expensive and suffer large losses to the environment. Therefore, a diversity of fertilizers, known as special or of enhanced efficiency fertilizers, has been commercialized. The aim of this study was to evaluate the effect of different sources and levels of nitrogen fertilization in coverage, for agronomic characteristics and corn grain productivity, cultivated in the Cerrado region. The experiment was installed in 2015, in Monte Carmelo-MG. The experimental design utilized was a RCBD with four replications. The treatments consisted of five N sources (common urea, polymerized urea, urea combined with NBPT (thiophosphate N-n-butiltriamida or N-n-butiltriamida of thiophosphoric acid), organomineral combined or not with NBPT), five topdress N levels (40, 80, 120, 160 and 200 kg ha-1) and a control (no N topdressing). The evaluated parameters were: the first spike insertion height (FSIH), plant height (PH), stem diameter (DC), number of rows per spike (RS), number of grains per row (GR), spike length (SL), spike diameter (SD), prolificacy (EP), 1,000-grain weight (TGW), leaf chlorophyll index (LCI), content of foliar nutrients, dry matter in aerial part of the plant (DM) and productivity (PG). The results showed that, with the exception of stem diameter, there was no significant statistical difference between sources of nitrogen, indicating that the organomineral source is as efficient as a mineral source. Regardless of the source, the addition of N fertilizers in increasing doses promoted enhanced development of corn plants, increased chlorophyll content, stem diameter, leaf N content, crude protein and productivity. For most phytotechnical features, there was no significant statistic difference in treatments compared to control.
Resumo:
Currently, the management recommendations for asian soybean rust (ASR) has been based on the application of protective fungicides mixed with triazoles and stronilurins. Thus, this study aimed at assessing whether the increased productivity provided by the application of protective fungicides is due solely to the fungicidal action of the product or some physiological changes in the plant and which the latter would be. The experiment was conducted from March to July 2015 at the experimental station of Udi Research and Development in Uberlândia-MG, with the cultivar 97Y07 RR. The experimental design chosen for this study was comprised of a randomized block with four replications and 16 treatments: check, fluxapyroxad + pyraclostrobin (116.55 + 58.45 g ha-1), azoxystrobin + benzovindiflupir (90 + 45 g ha-1), trifloxystrobin + prothioconazole (60 + 70 g ha-1), tebuconazole + picoxystrobin (100 + 60 g ha-1), picoxystrobin + cyproconazole (60 + 24 g ha-1), mancozeb (1125 g ha-1), azoxistrobina + tebuconazole + difenoconazole (60 + 75 + 120 g ha-1), azoxystrobin + tebuconazole + difenoconazole + chlorothalonil ( 60 + 120 + 75 + 1440 g ha-1), and mistures fluxapyroxad + pyraclostrobin + mancozeb, azoxystrobin + benzovindiflupir + mancozeb, trifloxystrobin + prothioconazole + mancozeb, tebuconazole + picoxystrobin + mancozeb, picoxystrobin + cyproconazole + mancozeb, azoxystrobin + tebuconazole + difenoconazole + mancozeb, and azoxystrobin + benzovindiflupir + chlorothalonil, from the aforesaid doses. The first application of the treatments occurred in R1, in the absence of symptoms. The number of applications, intervals and the use of adjuvants were performed according to the recommendations by manufacturers. The variables analyzed were: disease severity, concentration of chlorophylls and carotenoids, photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), internal carbon concentration (Ci), instantaneous efficiency in water use (A/E), intrinsic water use efficiency (A/gs), and carboxylation efficiency (A/C). With these data collected, this study set to date the progress curve of each variable (AUPC). At the end of the crop cycle, the average of pods per plant was quantified, grain per pod, productivity and weight of 1,000 grains. It was concluded that: the addition of mancozeb to fluxapyroxad + pyraclostrobin, azoxystrobin + benzovindiflupir, trifloxystrobin + prothioconazole and tebuconazole + picoxystrobin potentiated the ASR control; adding mancozebe to the mixture azoxystrobin + benzovindiflupir provided better control of the disease compared to the addition of chlorothalonil; mancozeb amounts to AUPC concentration of photosynthetic pigments and when added to axozystrobin + tebuconazole + difenoconazole, increases the AUPC for total chlorophyll concentration, as well as when chlorothalonil was added; mancozeb added to the mix fluxapyroxad + pyraclostrobin raised the AUPC for A/Ci and A/gs, increasing the W1,000G and crop productivity; the addition of protectors similarly reflected on the productivity of culture.