4 resultados para massa foliar
em Universidade Federal de Uberlândia
Resumo:
Organo-mineral fertilizers have been used to both meet plants’ nutritional needs and reduce producers’ reliance on mineral fertilizers. This practice improves both the use of nutrients by plants and the soil structure due to the organic matter in these fertilizers. This study aimed to determine the effect of organic matter sources in the composition of organomineral fertilizers and compare it to the effect of traditional mineral fertilizers when it comes to the initial development of sorghum. Research was carried out in a greenhouse at the Federal University of Uberlandia, in Uberlandia, Minas Gerais, Brazil. Sorghum seeds of grain-bearing simple hybrid 1G100 were used in the seeding process. The experiment followed a randomized complete block design in a 4 x 3 + 2 factorial arrangement. Factors included four levels (50, 75, 100 and 125% of 450 kg ha-1, which is the recommended dose for sorghum crops), three organic matter sources in the composition of the organomineral fertilizers (sewage sludge, filter cake, and peat), a control (100% mineral fertilizer), and an untreated check (no fertilizers). Each experimental plot consisted of four plants divided into two pots. Oxisol was used in all pots. Analyses were performed at 30 and 60 days after seeding (DAS) and targeted: plant height, stem diameter, chlorophyll A, chlorophyll B, and leaf area. After this period, plants were removed from the soil, and had their aerial parts isolated to be dried in an air-forced oven before measurement of their dry mass. Means of the organomineral fertilizers outperformed those of both control and untreated check plots in almost all variables at 30 DAS. The only exception was variable stem diameter, in which organomineral fertilizers outperformed untreated check plots only. Sorghum fertilized with organomineral fertilizers also showed positive results in the variables analyzed at 60 DAS: even with dose reduction, their means were similar to those found in control plots. Organomineral fertilizers had higher means in some variables, such as diameter and dry mass of the aerial part, than both control and untreated check plots. In the conditions set in this study and considering the variables herein reported, organomineral fertilizers can substitute mineral fertilizers in the initial development of sorghum, even with some dose reductions.
Resumo:
Potato crop cycle is relatively short and presents high yield per area; therefore, it is a very demanding culture for available nutrients in the soil solution. Despite its importance and the large number of studies about the crop, there is little research on plant nutrition regarding the use of organomineral fertilizer. This study evaluated potato, cv. Cupid, development and productivity as a function of fertilization with pelletized organomineral fertilizer. The experiment was done in Perdizes, Minas Gerais, in the rainy season of 2014/2015. The experimental design was a randomized blocks, with factorial arrangement of 4 x 2 (doses x management) and a control with mineral fertilizer, with 3 repetitions. Organomineral fertilizer doses were 25, 50, 75 and 100% of the conventional mineral dose, which was 600 kg ha-1 K2SO4, 850 kg ha-1 NH4H2PO4, and 300 kg ha-1 (NH4)2SO4 of topdressing 19 days after planting (DAP). Fertilization managements were with or without topdressing at 19 DAP, when the potato was hilled. Two plants per plot were sampled at 36, 50, 64 and 81 DAP and analyzed for leaf, stem and dry matter contents. DRIS - Diagnosis and Recommendation Integrated System was applied at 36 DAP and the potatoes were harvested 112 DAP and subjected to tuber classification. Throughout the cycle, stem, leaf and tuber dry mass showed no significant differences between the fertilization managements. The doses of organomineral fertilizer and topdressing management does not affect productivity, and the lower doses (25%) were similar the greater ones and the control, with an average of 16.8 t ha-1, demonstrating that it is viable to make a single application of organomineral fertilizer at planting due to operational efficiency. The low yields observed were due to high rainfall and temperature, creating favorable conditions for the incidence of pests and diseases. According to DRIS, the organomineral dose 75% for topdressing, presented the best nutritional balance.
Resumo:
Light varies widely in both time and space in forest formation of “Bioma Cerrado”. Cybistax antisyphilitica occurs in areas typical of this biome, such as cerrado sensu stricto, “cerradões”, and altered areas. The aim of this study was to understand the morphological and physiological responses of C. antisyphilitica to alterations in light intensity. Juvenile plants (5 month of age) were taken to a fragment of semideciduous forest in Uberlândia-MG, and were divided into three treatments: 50 were maintained under the canopy (UC) 20 were kept in small gap (SG) and 20 were maintained under in full sun (FS). The daily courses of chlorophyll a fluorescence were made at the beginning, middle and end of dry season in 2015. At the end of the experiment measurements of chlorophyll content, gas exchange and growth were made. The plants showed dynamic photoinhibition as exhibited by reductions on Fv/Fm close to midday at the end of the dry season. Regarding the effective quantum yield (ΔF/Fm'), plants under FS showed reduced values that coincided with the higher values of electron transport rates (ETR). Plants under FS showed higher values of net CO2 assimilation rates, stomatal conductance, transpiration rates, water use efficiency and chlorophyll content compared to plants under UC. The stem diameter, dry mass of leaves and stem, total dry mass and relative growth rate were higher in plants under FS than plants under UC. On the other hand, plants under UC showed superior values of height, specific leaf area and leaf area ratio. Our results indicate that C. antisyphilitica has plasticity to survive in the contrasting light environments of the semideciduous forests, but this species was able to growth better under full sun conditions.
Resumo:
Nitrogen (N) is one of the major nutrients nutrients absorbed in corn crops, for this reason, nitrogen based fertilizers are expensive and suffer large losses to the environment. Therefore, a diversity of fertilizers, known as special or of enhanced efficiency fertilizers, has been commercialized. The aim of this study was to evaluate the effect of different sources and levels of nitrogen fertilization in coverage, for agronomic characteristics and corn grain productivity, cultivated in the Cerrado region. The experiment was installed in 2015, in Monte Carmelo-MG. The experimental design utilized was a RCBD with four replications. The treatments consisted of five N sources (common urea, polymerized urea, urea combined with NBPT (thiophosphate N-n-butiltriamida or N-n-butiltriamida of thiophosphoric acid), organomineral combined or not with NBPT), five topdress N levels (40, 80, 120, 160 and 200 kg ha-1) and a control (no N topdressing). The evaluated parameters were: the first spike insertion height (FSIH), plant height (PH), stem diameter (DC), number of rows per spike (RS), number of grains per row (GR), spike length (SL), spike diameter (SD), prolificacy (EP), 1,000-grain weight (TGW), leaf chlorophyll index (LCI), content of foliar nutrients, dry matter in aerial part of the plant (DM) and productivity (PG). The results showed that, with the exception of stem diameter, there was no significant statistical difference between sources of nitrogen, indicating that the organomineral source is as efficient as a mineral source. Regardless of the source, the addition of N fertilizers in increasing doses promoted enhanced development of corn plants, increased chlorophyll content, stem diameter, leaf N content, crude protein and productivity. For most phytotechnical features, there was no significant statistic difference in treatments compared to control.