4 resultados para deslocamento químco
em Universidade Federal de Uberlândia
Resumo:
Welding is one of the most employed process for joining steel pipes. Although, manual welding is still the most used one, mechanized version and even automatized one have increased its demand. Thus, this work deals with girth welding of API 5L X65 pipes with 8” of nominal diameter and 8.0 mm thickness, beveled with V-30º narrow gap. Torch is moved by a bug carrier (mechanized welding) and further the parameters are controlled as a function of angular position (automatized welding). Welding parameters are presented for filling the joint with two-passes (root and filling/capping passes). Parameters for the root pass were extracted from previous author´s work with weldments carried out in plates, but validated in this work for pipe welding. GMAW processes were assessed with short-circuit metal transfer in both conventional and derivative modes using different technologies (RMD, STT and CMT). After the parameter determination, mechanical testing was performed for welding qualification (uniaxial tension, face and root bending, nick break, Charpy V-notch impact, microhardness and macrograph). The initially obtained results for RMD and CMT were acceptable for all testing and, in a second moment, also for the STT. However, weld beads carried out by using the conventional process failed and revealed the existence of lack of fusion, which required further parametrization. Thus, a Parameter-Variation System for Girth Welding (SVP) was designed and built to allow varying the welding parameters as a function of angular position by using an inclinometer. The parameters were set for each of the three angular positions (flat, vertical downhill and overhead). By using such equipment and approach, the conventional process with parameter variation allowed reducing the welding time for joint accomplishment of the order of 38% for the root pass and 30% for the filling/capping pass.
Resumo:
Data variability analysis has been the focus of a number of studies seeking to capture differences of patterns generated by biological systems. Although several studies related to gait employ the analysis of variability in their observations, we noticed a lack of such information for subjects with unilateral coxarthrosis undergoing total hip arthroplasty (THA). To tackle this deficiency of information, we conducted a study of the gait on a treadmill with10 healthy subjects (30.7 ± 6.75 years old) from G1 and 24 subjects (65 ± 8.5 years old) with unilateral THA from G2. Thus, by means of two inertial measurement units (IMUs) positioned in the pelvis, we have developed a detection method of the step and stride for calculating these intervals and extract the signal characteristics. The variability analysis (coefficient of variation) was performed, taking into consideration the extracted features and the step and stride times. The average and the 95% confidence interval estimate for the average of the step and stride times to each group were in agreement with literature. The mean coefficient of variation for the step and stride times was calculated and compared among groups by the Kruskal-Wallis test with 95% confidence interval. Each component X, Y and Z of the two IMUs (accelerometer, magnetometer and gyroscope) corresponded to a variable. The resultants of each sensor, the linear velocity (accelerometers) and the instantaneous angular displacement (gyroscopes) completed the set of variables. The characteristics were extracted from the signals of these variables to check the variability in the G1 and G2 groups . There were significant differences (p <0.05) between G1 and G2 for the average of the step and stride times. The variability of the step and stride, as well as the variability of all other evaluated characteristics were higher for the group G2 (p <0.05). The method proposed in this study proved to be suitable for the measuring of variability of biomechanical parameters related to the extracted features. All the extracted features categorized the groups. The G2 group showed greater variability, so it is possible that the age and the pathological condition of the hip both contributed to this result.
Resumo:
In this work are considered two bidimensional systems, with distints chacacteristcs and applicabilitys. Is studied the adsorption of transition metals (MT) Fe, Co, Mn and Ru in extended defects, formed by graphene grain boundaries. First in pristine graphene The hollow site of carbon hexagon, in pristine graphene, are the most stable for MT adsorption. The Dirac cone in eletronic structure of graphene was manteined with the presence of MT. For the considered grain boundaries the MT has a greater stability for absorption in the grain boundaries sites in comparison with pristine graphene. Through the energy barrier values, are observed diffusion chanels for MT localized on the grain boundaries. This diffusion chanels indicate a possible formation of nanolines of MT in graphene. For the first stage of the nanolines, ate observed a better stability for the system with greater MT concentration, due to MT-MT interactions. Also, due to the magnetic moment of the MT, the nanolines show a magnetization. For the most stable configurations the system are metallics, particularly for Fe the band structure indicates an anisotropic spin current. In a second study, are considereted the retention capacity for metallic contaminants Cd and Hg in clayminerals, kaolinite (KAO) and montmorillonite (MMT). Through the adsorption energies of contaminantes in the clayminerals, was observed a increase in stability with the increase of contaminants concentration, due to the interaction Cd-Cd and Hg-Hg. Also, was observed that KAO has a strong interaction beteween monolayers than MMT. In this sence, for the adsoption process of contaminantes in the natural form of KAO and MMT, the latter has a better retention capacity, due to the small net work for contaminant intercalation. However, when the modification of clayminerals, with molecules that increase the spacing between monolayers, exist a optimal condition, which the contaminant absorption are more stable in KAO system than in MMT. In the Langmuir adsorption model for the clayminerals in the optimal monolayer spacing, the retention capacity for Cd and Hg in KAO system are 21% greater than in MMT system. Also, for the X-ray Absorption Near Edge Spectroscopy (XANES) for the K edge of Cd and Hg, are found a positive shift of absorption edge with the decreasing of monolayer spacing. This result indicates a possible way to determine the concentration of adsorbed contaminats in relation to unabsorbed ones, from the decomposition of experimental XANES in the obteined spectras.
Resumo:
New ways of sociability can be perceive in a historical context marked by the social change. The investigation developed by this thesis follow this idea, pointing the emergency of social relations established between individuals in drift. The foremost aim of this research was to assay, using a case study, the bonds constructed among the people that attend the Terminal Central - Pratic Shopping of Uberlândia-MG, the main responsible for the reception and distribution of public transport of the city. With the growth of the urban centers, their population became attractive objects of analysis in the social science field and the understanding of the city, in their core, by the dwellers displacement. Thus, after the separation of the people that use the Terminal Central in seven groups (students, families and couples, elderly, deaf and/or mute, employees of the stores in Terminal and of the bus companies), their interactions tried to be understood, by identifying the similarity with the sociability in traffic studies. In places with a great flow of people, the sociability in traffic suggests bonds of friendship, kindness, as foray, impersonality, frailty and the sudden break of contact.