1 resultado para catálise heterogênea

em Universidade Federal de Uberlândia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the oxidation and mineralization of paracetamol, based in an advanced oxidative process promoted by heterogeneous photocatalysis, was evaluated. The action of two photocatalysts (titanium dioxide, and a composite based on the association between titanium dioxide and zinc phthalocyanine dye) was studied. First of all, experiments in laboratory scale were performed using as radiation font a 400 W high pressure mercury lamp. The mineralization of paracetamol, promoted by both photocatalysts, was evaluated working with 4L of solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. To find the best experimental conditions, the influence of hydrogen peroxide concentration and pH was evaluated for the reactions. The best results for the reactions in laboratory scale was obtained using 33,00 mg L-1 of hydrogen peroxide in natural pH (6,80). Under these conditions, 100% oxidation was reached in just 40 minutes of reaction using TiO2 P25, while the mineralization was 78%. Using the composite, the mineralization was 63% in 2 hours of reaction and a oxidation of almost 100% was reached after 60 minutes. A CPC reactor (compound parabolic concentrator) was employed in the expanded work scale, using the sun as irradiation source. In this case the experiments were performed using 50 L of aqueous solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. The assays were done at pH 3,00 and natural pH (6,80). The used concentration of hydrogen peroxide was 33,00 mg L-1, adopted after laboratory scale studies. The reaction at pH 3,00 shows to be more advantageous, since under natural pH (6,80), the use of deionized water was necessary to prepare the solutions, probably because the deleterious action of carbonate ions, known hydroxyl radical scavengers. Using solar irradiation, the reaction mediated by the composite was more efficient when compared with the assays under laboratory scale since the composite presents the advantage of promoting a better use of visible radiation. Under these conditions, the mineralization increased from 40% to 56% under pH 3,00. At natural pH the oxidation occurred more slowly and the mineralization decreased from 56% to 50%. Thus, the use of pH 3,00 will be more interesting in real scale applications, even if it is necessary the pH correction before the discard of the treated effluent to the environment.