2 resultados para bone formation
em Universidade Federal de Uberlândia
Resumo:
The chronic state of hyperglycemia due to diabetes mellitus affects multiples organs impairing life quality. In bone, diabetes alters strength and mineral density and also suppresses the osteoblast activity, leading to an unbalanced bone healing process. Hyperbaric oxygen therapy (HBO) is suggested as an adjuvant treatment to accelerate bone repair. This study evaluated the effects of HBO in the number of mast cells and in new bone formation at the initial stage of bone repair in normoglycemic and diabetic rats. It was hypothesized that HBO treatment may improve bone repair in diabetic bone. The rats were equally divided in four groups: Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin (65mg/kg) and femoral bone defects were created thirty days after diabetes induction in all groups. HBO initiated immediately after surgery procedure and was performed daily, for 7 days, in the CH e DH groups. Seven days after surgery, all animals were euthanized. The femur diaphyses were removed, fixated, decalcified and processed for paraffin embedding. The semi-serial histological sections obtained were stained with Hematoxylin-Eosin (HE), Mallory Trichrome and Toluidine Blue. The qualitative analysis was conducted in the histology slides stained with HE, where it was evaluated the morphological aspects of bone repair in the lesion area, observing the presence of clot, inflammatory cells, granulation tissue, type of bone tissue, morphology of bone cells, and thickness and organization of bone trabeculae. In the slides stained with Mallory Trichrome and Toluidine Blue were evaluated the percentage of new bone formation and number of mast cells, respectively. The qualitative analysis showed that the CH group presented a more advanced stage of bone repair compared to the C group, showing thicker trabeculae and greater bone filling of the lesion area. In D and DH group, the lesion area was partially filled with new bone formation tissue and presented thinner trabeculae and fewer areas associated to osteoclasts compared to control group. The histomorphometric analysis showed a significant improvement in new bone formation (p<0.001) comparing CH (38.08 ± 4.05) and C (32.05 ± 5.51); C and D (24.62 ± 2.28 and CH and DH (27.14 ± 4.21) groups. In the normoglycemic rats there was a significant increasing in the number of mast cells (p<0.05) comparing C (8.06 ± 5.15) and CH (21.06 ± 4.91) groups. In conclusion, this study showed that diabetes impaired bone repair and HBO was only able to increase new bone formation and the number of mast cells in the normoglycemic animals.
Resumo:
The study aimed to evaluate performance, relative weight of the small intestine, digestibility and deposition of minerals in the bone of broilers supplemented with enzymatic complex (carbohydrases and phytase) in sorghum-based diets or sorghum and millet. In the experiments based of sorghum and sorghum and millet were used 912 day-old male and female Hubbard Flex chicks (50:50) were distributed in a completely randomized design in a 2x2 factorial arrangement (Feed Control base Sorghum (Contcs); FeedReducedbase Sorghum (RedS); Feed Control base sorghum + Enzymatic Complex (Contcs + Enz);. Feed reduced base sorghum + Enzymatic Complex (RedS + Enz) in the study of feed basis of sorghum and millet the design was similar (Feed Control base sorghum + millet ( ContSM); Reduced feed based on Millet + Sorghum (RedSM); Feed Control based Sorghum + Millet + EnzimaticComplex (ContSM + Enz); Reduced Feed base Sorghum+ Millet + Enzimatic Complex (RedSM + Enz). At 35 and 42 days of age were determined performance data: feed intake (CR), body weight (BW), feed conversion (FC), viability (VIAB), relative weight of the small intestine and deposition of minerals in the bone. The digestibility was evaluated sorghum grain size (crushed and whole) with and without exoenzimatico complex. They used 32 birds, eight birds per treatment, in periods from 17 to 21 (initial) and 31 to 35 days of age (fattening). The exoenzimático complex used in feed favored the weight gain results, feed conversion and bone mineralization when compared to a control diet not added to enzymes, demonstrating its effect on non-starch polysaccharides and phosphorus phytic present as anti-nutritional factors in these diets, increasing the digestibility and supply of metabolizable energy, essential amino acids, methionine and lysine and calcium and phosphorus for bone formation. It is concluded that a safe strategy for inclusion in feed is based on the reduction of energy levels, essential amino acids, methionine and lysine and calcium and phosphorus in the expected result of the constant activity of the enzymes of this exoenzimático complex.