2 resultados para Water flow rate
em Universidade Federal de Uberlândia
Resumo:
An amperometric FIA method for nitrite quantification based on nitrite electroreduction and employing a carbon paste electrode (CPE) chemically modified with iron hexacyanoferrate (HCF) as an amperometric detector was developed. The influence of experimental conditions on the preparation of the electrode materials was evaluated and the materials obtained in each study were used for the development of modified electrodes. The electrochemical sensors were prepared by a fast, simple, and inexpensive procedure, and the long-term performance of the electrodes were quite satisfactory as the stability was maintained over one year. HCF was an effective redox mediator for nitrite electroreduction in acidic media, allowing nitrite detection at +0.2 V vs. Ag/AgClsat, which is a potential free of possible interfering species that are normally present in food and water samples. The electrochemical cell used in the FIA system was similar to a batch injection analysis cell, enabling recirculation of the carrier solution. This is an attractive feature because it allows the use of a high flow rate (6 mL min-1) leading to high sensitivity and analysis speed, while keeping reagent consumption low. The proposed method had a detection limit of 9 μmol L-1 and was successfully employed for nitrite quantification in spiked water and sausage samples. The obtained results were in good agreement with those provided by the spectrophotometric official method. At a 95 % confidence level it was not observed statistical differences neither in nitrite content nor in the precision provided by both methods. The experimental conditions for the synthesis of HCF were optimized and the best electrode material was prepared by mixing FeCl3, K4[Fe(CN)6] and carbon powder subjected to an acid and thermal treatment (400 ºC), followed by ultrasonic agitation at 4 °C. This material was used to construct an electrode with improved analytical performance to reduce nitrite, which presented greater stability compared to HCF film electrodeposited on the EPC, showing that the preparation procedure of the electrode material is an effective strategy for the development of HCF modified electrodes.
Resumo:
This work presents an experimental investigation of thermal hydraulic performance of the nanofluid composed by graphene nanoparticles dispersed in a mixture of water and ethylene glycol at a ratio of 70:30% by volume. The tests were carried out under forced convection inside a circular tube with uniform heat flux on the wall for the laminar-turbulent transition regime. The mass flow rate ranged from 40 to 70 g/s corresponding to Reynolds numbers between 3000 and 7500. The heat flux was maintained constant at values of 11, 16 and 21 kW/m², as well as the inlet temperature of 15, 20 and 25°C. Three samples were produced with the nanofluid volumetric concentration of 0.05%, 0.10% and 0.15%. Thermophysical properties were experimentaly measured for all samples that were critically compared and discussed with theoretical models most commonly used in the literature. Initially, experiments with distilled water confirmed the validity of the experimental equipment for the thermo-hydraulic tests. Therefore, nanofluid samples that showed the highest thermal conductivity, corresponding to the volumetric concentrations of 0.15% and 0.10%, were subjected to the tests. The thermal-hydraulic performance for both samples was unsatisfactory. The heat transfer coefficients for convection of nanofluids reduced 21% in average, for the sample with = 0.15% and 26% and for =0.10%. The pressure drop of the samples was higher than the base fluid. Finally, the pressure drop and heat transfer coefficient by convection of both samples were also compared to theoretical models. The models used for pressure drop showed an excellent agreement with experimental results, which is remarkable considering the transitional flow.