1 resultado para User-based collaborative filtering
em Universidade Federal de Uberlândia
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (31)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (60)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (9)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (51)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (6)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (12)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (65)
- DRUM (Digital Repository at the University of Maryland) (1)
- FUNDAJ - Fundação Joaquim Nabuco (5)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (47)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- Nottingham eTheses (10)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (40)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (30)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (2)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (99)
- Universidade de Madeira (1)
- Universidade do Minho (11)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (40)
- Université de Montréal (1)
- Université de Montréal, Canada (13)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (27)
- University of Southampton, United Kingdom (3)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Nowadays, the amount of customers using sites for shopping is greatly increasing, mainly due to the easiness and rapidity of this way of consumption. The sites, differently from physical stores, can make anything available to customers. In this context, Recommender Systems (RS) have become indispensable to help consumers to find products that may possibly pleasant or be useful to them. These systems often use techniques of Collaborating Filtering (CF), whose main underlying idea is that products are recommended to a given user based on purchase information and evaluations of past, by a group of users similar to the user who is requesting recommendation. One of the main challenges faced by such a technique is the need of the user to provide some information about her preferences on products in order to get further recommendations from the system. When there are items that do not have ratings or that possess quite few ratings available, the recommender system performs poorly. This problem is known as new item cold-start. In this paper, we propose to investigate in what extent information on visual attention can help to produce more accurate recommendation models. We present a new CF strategy, called IKB-MS, that uses visual attention to characterize images and alleviate the new item cold-start problem. In order to validate this strategy, we created a clothing image database and we use three algorithms well known for the extraction of visual attention these images. An extensive set of experiments shows that our approach is efficient and outperforms state-of-the-art CF RS.