2 resultados para Translate
em Universidade Federal de Uberlândia
Resumo:
In 2004, the National Institutes of Health made available the Patient-Reported Outcomes Measurement Information System – PROMIS®, which is constituted of innovative item banks for health assessment. It is based on classical, reliable Patient-Reported Outcomes (PROs) and includes advanced statistical methods, such as Item Response Theory and Computerized Adaptive Test. One of PROMIS® Domain Frameworks is the Physical Function, whose item bank need to be translated and culturally adapted so it can be used in Portuguese speaking countries. This work aimed to translate and culturally adapt the PROMIS® Physical Function item bank into Portuguese. FACIT (Functional Assessment of Chronic Illness Therapy) translation methodology, which is constituted of eight stages for translation and cultural adaptation, was used. Fifty subjects above the age of 18 years participated in the pre-test (seventh stage). The questionnaire was answered by the participants (self-reported questionnaires) by using think aloud protocol, and cognitive and retrospective interviews. In FACIT methodology, adaptations can be done since the beginning of the translation and cultural adaption process, ensuring semantic, conceptual, cultural, and operational equivalences of the Physical Function Domain. During the pre-test, 24% of the subjects had difficulties understanding the items, 22% of the subjects suggested changes to improve understanding. The terms and concepts of the items were totally understood (100%) in 87% of the items. Only four items had less than 80% of understanding; for this reason, it was necessary to chance them so they could have correspondence with the original item and be understood by the subjects, after retesting. The process of translation and cultural adaptation of the PROMIS® Physical Function item bank into Portuguese was successful. This version of the assessment tool must have its psychometric properties validated before being made available for clinical use.
Resumo:
Soybean crop is substantially important for both Brazilian and international markets. A relevant disease that affects soybeans is powdery mildew, caused by fungus Erysiphe diffusa. The objective of this master’s thesis was to analyze physiological changes produced by fungicides in two greenhouse-grown soybean genotypes (i.e., Anta 8500 RR and BRS Santa Cruz RR) naturally infected with powdery mildew. A complete randomized block design was used with six replications in a 2x5 factorial arrangement. Treatments consisted of applications of Azoxystrobin, Biofac (fermented solution of Penicillium sp.), Carbendazim or Picoxystrobin fungicides, and a Control (no fungicide application). Three applications were performed in the experimental period, and each eventually represented a period of data collection. Gas exchanges, chlorophyll content, fluorescence of chlorophyll a and disease severity were measured twice a week. Dry grain mass production was measured at the end of the experiment. Areas under progression curve of variables were submitted to both ANOVA and Tukey’s test at 5% significance. Treatments Azoxystrobin, Biofac and Picoxystrobin had higher photosynthetic rates than Control in the second period, with genotype Anta having higher rate than Santa Cruz. Biofac had higher transpiration rate than Control in the second period, while Biofac and Picoxystrobin had higher figures in Santa Cruz in the third period. Carbendazim had greater stomatal conductance in Anta, whilst Azoxystrobin, Biofac and Picoxystrobin had greater values than Carbendazim in Santa Cruz. Biofac and Picoxystrobin had greater intercellular CO2 concentration in Santa Cruz. Azoxystrobin and Picoxystrobin had greater instantaneous water use efficiency than Control, with Anta being more efficient than Santa Cruz. Biofac and Picoxystrobin had greater intrinsic water use efficiency in Anta, while Carbendazim increased efficiency in Santa Cruz. Azoxystrobin, Biofac and Picoxystrobin had greater carboxylation efficiency than Control in the second period, with Anta being more efficient than Santa Cruz. Azoxystrobin and Biofac had greater contents of chlorophylls a, b and a+b than Control in the second period. Azoxystrobin had greater effective quantum yield than Control and Picoxystrobin. All treatments faced increasing disease severity over time, with Anta being less resistant than Santa Cruz. As for production, data showed that: (1) Santa Cruz was more productive than Anta, having the greatest dry grain mass with Carbendazim, and (2) Anta’s lower disease severity did not translate into higher productions. In conclusion, strobilurins (Azoxystrobin and Picoxystrobin) and Biofac performed similarly as to their physiological effects on soybeans; however, these effects did not lead to increased dry grain mass by the end of the experiment.