3 resultados para Tráfego aéreo

em Universidade Federal de Uberlândia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The substantial increase in the number of applications offered through the computer networks, as well as in the volume of traffic forwarded through the network, have hampered to assure adequate service level to users. The Quality of Service (QoS) offer, honoring specified parameters in Service Level Agreements (SLA), established between the service providers and their clients, composes a traditional and extensive computer networks’ research area. Several schemes proposals for the provision of QoS were presented in the last three decades, but the acting scope of these proposals is always limited due to some factors, including the limited development of the network hardware and software, generally belonging to a single manufacturer. The advent of Software Defined Networking (SDN), along with the maturation of its main materialization, the OpenFlow protocol, allowed the decoupling between network hardware and software, through an architecture which provides a control plane and a data plane. This eases the computer networks scenario, allowing that new abstractions are applied in the hardware composing the data plane, through the development of new software pieces which are executed in the control plane. This dissertation investigates the QoS offer through the use and extension of the SDN architecture. Based on the proposal of two new modules, one to perform the data plane monitoring, SDNMon, and the second, MP-ROUTING, developed to determine the use of multiple paths in the forwarding of data referring to a flow, we demonstrated in this work that some QoS metrics specified in the SLAs, such as bandwidth, can be honored. Both modules were implemented and evaluated through a prototype. The evaluation results referring to several aspects of both proposed modules are presented in this dissertation, showing the obtained accuracy of the monitoring module SDNMon and the QoS gains due to the utilization of multiple paths defined by the MP-Routing, when forwarding data flow through the SDN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current and future applications pose new requirements that Internet architecture is not able to satisfy, like Mobility, Multicast, Multihoming, Bandwidth Guarantee and so on. The Internet architecture has some limitations which do not allow all future requirements to be covered. New architectures were proposed considering these requirements when a communication is established. ETArch (Entity Title Architecture) is a new Internet architecture, clean slate, able to use application’s requirements on each communication, and flexible to work with several layers. The Routing has an important role on Internet, because it decides the best way to forward primitives through the network. In Future Internet, all requirements depend on the routing. Routing is responsible for deciding the best path and, in the future, a better route can consider Mobility aspects or Energy Consumption, for instance. In the dawn of ETArch, the Routing has not been defined. This work provides intra and inter-domain routing algorithms to be used in the ETArch. It is considered that the route should be defined completely before the data start to traffic, to ensure that the requirements are met. In the Internet, the Routing has two distinct functions: (i) run specific algorithms to define the best route; and (ii) to forward data primitives to the correct link. In traditional Internet architecture, the two Routing functions are performed in all routers everytime that a packet arrives. This work allows that the complete route is defined before the communication starts, like in the telecommunication systems. This work determined the Routing for ETArch and experiments were performed to demonstrate the control plane routing viability. The initial setup before a communication takes longer, then only forwarding of primitives is performed, saving processing time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work it was developed mathematical resolutions taking as parameter maximum intensity values for the interference analysis of electric and magnetic fields and was given two virtual computer system that supports families of CDMA and WCDMA technologies. The first family were developed computational resources to solve electric and magnetic field calculations and power densities in Radio Base stations , with the use of CDMA technology in the 800 MHz band , taking into account the permissible values referenced by the Commission International Protection on non-Ionizing Radiation . The first family is divided into two segments of calculation carried out in virtual operation. In the first segment to compute the interference field radiated by the base station with input information such as radio channel power; Gain antenna; Radio channel number; Operating frequency; Losses in the cable; Attenuation of direction; Minimum Distance; Reflections. Said computing system allows to quickly and without the need of implementing instruments for measurements, meet the following calculated values: Effective Radiated Power; Sector Power Density; Electric field in the sector; Magnetic field in the sector; Magnetic flux density; point of maximum permissible exposure of electric field and power density. The results are shown in charts for clarity of view of power density in the industry, as well as the coverage area definition. The computer module also includes folders specifications antennas, cables and towers used in cellular telephony, the following manufacturers: RFS World, Andrew, Karthein and BRASILSAT. Many are presented "links" network access "Internet" to supplement the cable specifications, antennas, etc. . In the second segment of the first family work with more variables , seeking to perform calculations quickly and safely assisting in obtaining results of radio signal loss produced by ERB . This module displays screens representing propagation systems denominated "A" and "B". By propagating "A" are obtained radio signal attenuation calculations in areas of urban models , dense urban , suburban , and rural open . In reflection calculations are present the reflection coefficients , the standing wave ratio , return loss , the reflected power ratio , as well as the loss of the signal by mismatch impedance. With the spread " B" seek radio signal losses in the survey line and not targeted , the effective area , the power density , the received power , the coverage radius , the conversion levels and the gain conversion systems radiant . The second family of virtual computing system consists of 7 modules of which 5 are geared towards the design of WCDMA and 2 technology for calculation of telephone traffic serving CDMA and WCDMA . It includes a portfolio of radiant systems used on the site. In the virtual operation of the module 1 is compute-: distance frequency reuse, channel capacity with noise and without noise, Doppler frequency, modulation rate and channel efficiency; Module 2 includes computes the cell area, thermal noise, noise power (dB), noise figure, signal to noise ratio, bit of power (dBm); with the module 3 reaches the calculation: breakpoint, processing gain (dB) loss in the space of BTS, noise power (w), chip period and frequency reuse factor. Module 4 scales effective radiated power, sectorization gain, voice activity and load effect. The module 5 performs the calculation processing gain (Hz / bps) bit time, bit energy (Ws). Module 6 deals with the telephone traffic and scales 1: traffic volume, occupancy intensity, average time of occupancy, traffic intensity, calls completed, congestion. Module 7 deals with two telephone traffic and allows calculating call completion and not completed in HMM. Tests were performed on the mobile network performance field for the calculation of data relating to: CINP , CPI , RSRP , RSRQ , EARFCN , Drop Call , Block Call , Pilot , Data Bler , RSCP , Short Call, Long Call and Data Call ; ECIO - Short Call and Long Call , Data Call Troughput . As survey were conducted surveys of electric and magnetic field in an ERB , trying to observe the degree of exposure to non-ionizing radiation they are exposed to the general public and occupational element. The results were compared to permissible values for health endorsed by the ICNIRP and the CENELEC .