1 resultado para Topic Ontology, User Profiles, Pelevance Assessment, Information Retrieval
em Universidade Federal de Uberlândia
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (3)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (13)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (34)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (67)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CentAUR: Central Archive University of Reading - UK (41)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (100)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (13)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (15)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (38)
- DRUM (Digital Repository at the University of Maryland) (3)
- FUNDAJ - Fundação Joaquim Nabuco (4)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Infoteca EMBRAPA (1)
- Institute of Public Health in Ireland, Ireland (9)
- Instituto Politécnico do Porto, Portugal (18)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (12)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (2)
- Open University Netherlands (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (5)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (76)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (31)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (4)
- Scielo Uruguai (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (22)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (30)
- Universidade do Minho (11)
- Universidade dos Açores - Portugal (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (11)
- Université de Lausanne, Switzerland (42)
- Université de Montréal (4)
- Université de Montréal, Canada (26)
- University of Michigan (30)
- University of Queensland eSpace - Australia (23)
- University of Southampton, United Kingdom (11)
- University of Washington (6)
Resumo:
Nowadays, the amount of customers using sites for shopping is greatly increasing, mainly due to the easiness and rapidity of this way of consumption. The sites, differently from physical stores, can make anything available to customers. In this context, Recommender Systems (RS) have become indispensable to help consumers to find products that may possibly pleasant or be useful to them. These systems often use techniques of Collaborating Filtering (CF), whose main underlying idea is that products are recommended to a given user based on purchase information and evaluations of past, by a group of users similar to the user who is requesting recommendation. One of the main challenges faced by such a technique is the need of the user to provide some information about her preferences on products in order to get further recommendations from the system. When there are items that do not have ratings or that possess quite few ratings available, the recommender system performs poorly. This problem is known as new item cold-start. In this paper, we propose to investigate in what extent information on visual attention can help to produce more accurate recommendation models. We present a new CF strategy, called IKB-MS, that uses visual attention to characterize images and alleviate the new item cold-start problem. In order to validate this strategy, we created a clothing image database and we use three algorithms well known for the extraction of visual attention these images. An extensive set of experiments shows that our approach is efficient and outperforms state-of-the-art CF RS.