3 resultados para Supressão por dexametasona
em Universidade Federal de Uberlândia
Resumo:
We present the results of electrical resistivity, magnetic susceptibility, specific heat and x-ray absorption spectroscopy measurements in Tb1−xYxRhIn5 (x = 0.00, 0.15, 0.4.0, 0.50 e 0.70) single crystals. Tb1−xYxRhIn5 is an antiferromagnetic AFM compound with ordering temperature TN ≈ 46 K, the higher TN within the RRhIn5 serie (R : rare earth). We evaluate the physical properties evolution and the supression of the AFM state considering doping and Crystalline Electric Field (CEF) effects on magnetic exchange interaction between Tb3+ magnetic ions. CEF acts like a perturbation potential, breaking the (2J + 1) multiplet s degeneracy. Also, we studied linear-polarization-dependent soft x-ray absorption at Tb M4 and M5 edges to validate X-ray Absorption Spectroscopy as a complementary technique in determining the rare earth CEF ground state. Samples were grown by the indium excess flux and the experimental data (magnetic susceptibility and specific heat) were adjusted with a mean field model that takes account magnetic exchange interaction between first neighbors and CEF effects. XAS experiments were carried on Total Electron Yield mode at Laborat´onio Nacional de Luz S´ıncrotron, Campinas. We measured X-ray absorption at Tb M4,5 edges with incident polarized X-ray beam parallel and perpendicular to c-axis (E || c e E ⊥ c). The mean field model simulates the mean behavior of the whole system and, due to many independent parameters, gives a non unique CEF scheme. XAS is site- and elemental- specific technique and gained the scientific community s attention as complementary technique in determining CEF ground state in rare earth based compounds. In this work we wil discuss the non conclusive results of XAS technique in TbRhIn5 compounds.
Resumo:
The classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic targets is indispensable to minimize the undesirable effects and improve the control of the infection. Previous studies demonstrated that enrofloxacin and toltrazuril were able to control the infection triggered by Neospora caninum and Toxoplasma gondii. Therefore, the aim of this present study was evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii proliferation in human trophoblast cells (BeWo lineage) and in human villous explants from third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine or association (sulfadiazine + pyrimethamine) in other to verify their viability by MTT or LDH assay, respectively. Next, BeWo cells were infected with T. gondii RH (2F1 clone) or ME49 strain, whereas villous were infected only with RH strain (2F1 clone), after, both cells and villous were treated or not with the same antibiotics and analyzed to T. gondii intracellular proliferation by beta-galactosidase assay (for RH strain) or blue toluidine staining (for ME49 strain). ELISA was performed in the supernatant to evaluate the cytokine profile. Enrofloxacin and toltrazuril did not change strongly the viability in cells and villous. Furthermore, the drugs decreased the parasite intracellular proliferation regardless T. gondii strain in BeWo cells and villous explants when compared to untreated and infected conditions. In BeWo cells infected by RH, enrofloxacin induced high levels of IL-6 low levels of MIF, while both cytokines were upregulated by enrofloxacin and toltrazuril in BeWo cells infected by ME49 strain. Additionally, in villous explantes, enrofloxacin induced high MIF production. Thus, enrofloxacin and toltrazuril were able to control the parasitism in BeWo cells and villous explants, and probably it occurs by modulation of immune response in these cells or tissues and direct action on parasite, but future experiments are necessary to verify this hypothesis.
Resumo:
Since the creation of supersonic vehicles, during the Second World War, the engineers have given special attention to the interaction between the aerodynamic efforts and the structures of the aircrafts due to a highly destructive phenomenon called flutter in aeronautical panel. Flutter in aeronautical panels is a self-excited aeroelastic phenomenon, which can occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, affecting significantly the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility of reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, very few of them are adapted to deal with the problem of estimating the flutter speeds of viscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. In this context, two different model of viscoelastic material are developed and applied to the model of sandwich plate by using finite elements. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.