7 resultados para Sequência didática

em Universidade Federal de Uberlândia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is based on the design and development of a Didactic sequence in Physics for the first year of high school in a public school, involving structured activities on Astronomy topics, Astronautics and Aeronautics. In addition, it produced a didactic-pedagogic Tutorial for teachers to develop teaching-learning processes in Physics through activities with handmade rockets. These activities have been based on teaching moments of questioning, systematization and contextualization. In this context the understanding and the deepening of concepts and scientific and physical phenomena are related to everyday knowledge, in accordance with the historical-cultural theory, with the Three Pedagogic Moments, dialogicity and Information and Communication Technologies as instruments of triggering actions and motivation, like movies and applications in teaching Astronomy, Physics and Mathematics. The research activities were conduced by adopting a qualitative approach and included reports, questionnaires, semi-structured interviews and other notes. The development of the Didactic Sequence enabled a differentiated teaching and learning process, including aspects such as conceptualization, contextualization, flexibility, interdisciplinary and theoreticalexperimental relationship.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this dissertation was elaborated an interdisciplinary didactic sequence for the development of Physical concepts involved in the interaction of laser radiation with biological matter in order to make a relation between Physics and other fields of knowledge aiming to enlarge the contextualization of scientific knowledge. The objective was to develop an educational product which theme is “Laser’s Interaction with Biological Tissues”. In this work, basic physical concepts related to laser radiation were presented, its interaction with matter and applicability in the student's daily life, with emphasis on Public Health. The inclusion of the subject in schools was effected through didactic transposition as theoretical foundation and the three pedagogical moments as teaching support. The development of the project involved discussions of scientific knowledge applied in society’s daily life. In the product's design the didactic sequence was projected and the use of varied teaching resources has been proposed, such as videos, texts, experiments, simulators and de Software “Tracker”. The construction of paradidactic material was performed considering different stages of equal importance for a teacher's reflection process. The work prioritizes the alternative conceptions of student, transforming him in a direct agent of the construction of knowledge and this aspect is based on the profile of the Student's Material. Another important point is the evaluation's proposal, this was systematized to be done class after class through building texts, essay questions, presentation of papers, among others activities. The didactic sequence guides the introduction of relevant topics of the students and society’s daily life, the ideas are not closed and in many times the teacher make changes which deem relevant to the teaching for better development of their practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies carried out in several countries have confirmed the students’ difficulty in explaining the causes of the seasons of the year, and most of times their learning takes place incorrectly. The seasons of the year have been generally treated in didactic books apart from people´s routine, based on the heliocentric system, what demands abstraction to understand the phenomenon. Before this difficulty, it is necessary to think about a teaching proposal which allows the students to realize the environmental characteristics and its changes over time, as well as the seasons themselves. Thus, our goal was to work from the perspective of the observer on the terrestrial surface, therefore using the topocentric system. For that, we constructed a didactic sequence, grounded in Ausubel´s meaningful learning theory (2003) and in Moreira´s critical meaningful learning theory (2010), which was applied to students in 9th grade of elementary school and in 2th grade of high school at Escola Estadual Jerônimo Arantes, in Uberlândia, Minas Gerais, owing to their previous knowledge and alternative conceptions, which were collected via interviews. Afterwards, to evaluate the applied methodology, we made new interviews, by which we realized improvement in learning in relation to the characteristics of the seasons based on Sun´s apparent path, which we attribute to reference the change of observation and the means to obtain data on the volume of rainfall and average temperature in the city throughout the year. On the other hand, there are points that were not highlighted in learning, such as the link between winter and rainy season and the causes of the seasons, points left to be discussed in future investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we have proposed and applied a methodology for teaching electromagnetism, based on an experimental activity and designed in an investigative teaching model, and containing a high degree of dialogism among teachers and students. We have used the discovery of the electron as a generator theme and a remote experiment to determine the charge-to-mass ratio of the electron as an educational resource. Our analyses indicate favorably towards the promotion of ways of appropriation of knowledge by the student, very different from those perceived in traditional expositive classes. Similarly, we find that the presence of a technological resource and an experimental activity create new posture of the teacher in the classroom, probably caused by the unpredictability of the results from the use of such resources. A challenge that we still need to solve is how to engage students in extra classroom tasks, since learning is not only effective in time for classes. We also present the weaknesses detected in our methodological proposal as well as implementations necessary in order to continue the validation process of this methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies carried out in several countries have confirmed the students’ difficulty in explaining the causes of the seasons of the year, and most of times their learning takes place incorrectly. The seasons of the year have been generally treated in didactic books apart from people´s routine, based on the heliocentric system, what demands abstraction to understand the phenomenon. Before this difficulty, it is necessary to think about a teaching proposal which allows the students to realize the environmental characteristics and its changes over time, as well as the seasons themselves. Thus, our goal was to work from the perspective of the observer on the terrestrial surface, therefore using the topocentric system. For that, we constructed a didactic sequence, grounded in Ausubel´s meaningful learning theory (2003) and in Moreira´s critical meaningful learning theory (2010), which was applied to students in 9th grade of elementary school and in 2th grade of high school at Escola Estadual Jerônimo Arantes, in Uberlândia, Minas Gerais, owing to their previous knowledge and alternative conceptions, which were collected via interviews. Afterwards, to evaluate the applied methodology, we made new interviews, by which we realized improvement in learning in relation to the characteristics of the seasons based on Sun´s apparent path, which we attribute to reference the change of observation and the means to obtain data on the volume of rainfall and average temperature in the city throughout the year. On the other hand, there are points that were not highlighted in learning, such as the link between winter and rainy season and the causes of the seasons, points left to be discussed in future investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents discussions on the teaching of Chemical Bonds in high school and some implications of this approach in learning chemistry by students. In general, understanding how the chemicals combine to form substances and compounds, it is a key point for understanding the properties of substances and their structure. In this sense, the chemical bonds represent an extremely important issue, and their knowledge is essential for a better understanding of the changes occurring in our world. Despite these findings, it is observed that the way in which this concept is discussed in chemistry class has contributed, paradoxically, to the emergence of several alternative designs, making the understanding of the subject by students. It is believed that one of the explanations for these observations is the exclusive use of the "octet rule" as an explanatory model for the Chemical Bonds. The use of such a model over time eventually replace chemical principles that gave rise to it, transforming knowledge into a series of uninteresting rituals and even confusing for students. Based on these findings, it is deemed necessary a reformulation in the way to approach this content in the classroom, taking into account especially the fact that the explanations of the formation of substances should be based on the energy concept, which is fundamental to understanding how atoms combine. Thus, the main question of the survey and described here of the following question: Can the development of an explanatory model for the Chemical Bonds in high school based on the concept of energy and without the need to use the "octet rule"? Based on the concepts and methodologies of modeling activity, we sought the development of a teaching model was made through Teaching Units designed to give subsidies to high school teachers to address the chemical bonds through the concept of energy. Through this work it is intended to make the process of teaching and learning of Chemical Bonds content becomes more meaningful to students, developing models that contribute to the learning of this and hence other basic fundamentals of chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents discussions on the teaching of Chemical Bonds in high school and some implications of this approach in learning chemistry by students. In general, understanding how the chemicals combine to form substances and compounds, it is a key point for understanding the properties of substances and their structure. In this sense, the chemical bonds represent an extremely important issue, and their knowledge is essential for a better understanding of the changes occurring in our world. Despite these findings, it is observed that the way in which this concept is discussed in chemistry class has contributed, paradoxically, to the emergence of several alternative designs, making the understanding of the subject by students. It is believed that one of the explanations for these observations is the exclusive use of the "octet rule" as an explanatory model for the Chemical Bonds. The use of such a model over time eventually replace chemical principles that gave rise to it, transforming knowledge into a series of uninteresting rituals and even confusing for students. Based on these findings, it is deemed necessary a reformulation in the way to approach this content in the classroom, taking into account especially the fact that the explanations of the formation of substances should be based on the energy concept, which is fundamental to understanding how atoms combine. Thus, the main question of the survey and described here of the following question: Can the development of an explanatory model for the Chemical Bonds in high school based on the concept of energy and without the need to use the "octet rule"? Based on the concepts and methodologies of modeling activity, we sought the development of a teaching model was made through Teaching Units designed to give subsidies to high school teachers to address the chemical bonds through the concept of energy. Through this work it is intended to make the process of teaching and learning of Chemical Bonds content becomes more meaningful to students, developing models that contribute to the learning of this and hence other basic fundamentals of chemistry.