2 resultados para SOFTWARE QUALITY CLASSIFICATION
em Universidade Federal de Uberlândia
Resumo:
Software bug analysis is one of the most important activities in Software Quality. The rapid and correct implementation of the necessary repair influence both developers, who must leave the fully functioning software, and users, who need to perform their daily tasks. In this context, if there is an incorrect classification of bugs, there may be unwanted situations. One of the main factors to be assigned bugs in the act of its initial report is severity, which lives up to the urgency of correcting that problem. In this scenario, we identified in datasets with data extracted from five open source systems (Apache, Eclipse, Kernel, Mozilla and Open Office), that there is an irregular distribution of bugs with respect to existing severities, which is an early sign of misclassification. In the dataset analyzed, exists a rate of about 85% bugs being ranked with normal severity. Therefore, this classification rate can have a negative influence on software development context, where the misclassified bug can be allocated to a developer with little experience to solve it and thus the correction of the same may take longer, or even generate a incorrect implementation. Several studies in the literature have disregarded the normal bugs, working only with the portion of bugs considered severe or not severe initially. This work aimed to investigate this portion of the data, with the purpose of identifying whether the normal severity reflects the real impact and urgency, to investigate if there are bugs (initially classified as normal) that could be classified with other severity, and to assess if there are impacts for developers in this context. For this, an automatic classifier was developed, which was based on three algorithms (Näive Bayes, Max Ent and Winnow) to assess if normal severity is correct for the bugs categorized initially with this severity. The algorithms presented accuracy of about 80%, and showed that between 21% and 36% of the bugs should have been classified differently (depending on the algorithm), which represents somewhere between 70,000 and 130,000 bugs of the dataset.
Resumo:
The objective of this study was to verify the association between some mobility items of the International Classification Functionality (ICF), with the evaluations Gross Motor Function Measure (GMFM-88), 1-minute walk test (1MWT) and if the motor impairment influences the quality of life in children with Cerebral Palsy (PC), by using the Paediatric Quality of Life Inventory (PedsQL 4.0 versions for children and parents). The study included 22 children with cerebral palsy spastic, classified in levels I, II, and III on the Gross Motor Function Classification System (GMFCS), with age group of 9.9 years old. Among those who have participated, seven of them were level I, eight of them were level II and seven of them were level III. All of the children and teenagers were rated by using check list ICF (mobility item), GMFM-88, 1-minute walk test and PedsQL 4.0 questionnaires for children and parents. It was observed a strong correlation between GMFM-88 with check list ICF (mobility item), but moderate correlation between GMFM-88 and 1-minute walk test (1MWT). It was also moderate the correlation between the walking test and the check list ICF (mobility item). The correlation between PedsQl 4.0 questionnaires for children and parents was weak, as well as the correlation of both with GMFM, ICF (mobility item) and the walking test. The lack of interrelation between physical function tests and quality of life, indicates that, regardless of the severity of the motor impairment and the difficulty with mobility, children and teenagers suffering of PC spastic, functional level I, II and III GMFCS and their parents have a varied opinion regarding the perception of well being and life satisfaction.