5 resultados para Roupas - Confecção
em Universidade Federal de Uberlândia
Resumo:
Even after its abolition, the slave labor still exists in the world. In a new socio-historic context, the shackles and slave quarters have been left behind, nowadays the workers are tempted, subjected to degrading conditions and have their rights retrenched. The contemporary slave labor has been emerging as subject of research in the Organizational Studies since the early 2000s, calling attention to many gaps to be filled about the way organizations all around the world use this practice. Contemporary slave labor is found in many and various economic activities, since coal to textile industries or even stores. In this dissertation, we have incorporated the consumption dimension to the field of Organizational Studies, discussing the modern slavery, aiming to understand the consumers’ point of view about this topic, that is, we have researched the consumers’ interpretations concerning the slave labor in the fashion industry. Our objective is to analyze consumer’s argumentative construction in the decision of buying or not products made by industries from the fashion field that were denounced because of slave labor usage. We have adopted fashion industry as research focus because it obscures the reflection of the consumers that feel like in a new world while shopping, a world of beauty and fantasy, seeking their own satisfaction. Furthermore, the Brazilian fashion industry is one of the biggest of the world (ABIT, 2015), with a huge symbolic strength in the country. We have realized a qualitative research using semi-structured interviews with 35 consumers to identify their arguments according to the criteria defined by Liakopoulos (2002): data, propositions, guarantees, supports and refutations. The data are the statements used by the interviewees categorically, that is, those which are clear in the interviews. The propositions are what qualifies and justifies the used data. The guarantees are related to the nature of the data, they are what gives the sense to the data and are introduced implicitly in the interviewee speech. The supports are universal premises introduced in order to legitimate the arguments. The refutations, when present, counter the used arguments. As results, we’ve found consumers who developed arguments pro-consumption and anti-consumption and who have defended ideas about the responsibility of different actors for the existence of this practice and for the fight against it. From these two categories: (1) pro-consumption – consume despite the complaints and (2) anti-consumption – don’t consume, because of the accusations; we have identified the following argumentative lines: skepticism, faultfinding and moral engagement. By the end, we have presented the interviewees’ argumentative construction and the obtained results.
Resumo:
This study describes the development of a prototype to evaluate the potential of environments based on two-dimensional modeling and virtual reality as power substations learning objects into training environments from a central operation and control of power utility Cemig. Initially, there was an identification modeling features and cognitive processes in 2D and RV, from which it was possible to create frames that serve to guide the preparation of a checklist with assigning a metric weight for measuring cognitive potential learning in the study sites. From these contents twenty-four questions were prepared and each was assigned a weight that was used in the calculation of the metric; the questions were grouped into skill sets and similar cognitive processes called categories. Were then developed two distinct environments: the first, the prototype features an interactive checklist and your individual results. And, second, a system of data management environment for the configuration and editing of the prototype, and the observation and analysis of the survey results. For prototype validation, were invited to access the virtual checklist and answer it, five professionals linked to Cemig's training area. The results confirmed the validity of this instrument application to assess the possible potential of modeling in 2D and RV as learning objects in power substations, as well as provide feedback to developers of virtual environments to improve the system.
Resumo:
Welding is one of the most employed process for joining steel pipes. Although, manual welding is still the most used one, mechanized version and even automatized one have increased its demand. Thus, this work deals with girth welding of API 5L X65 pipes with 8” of nominal diameter and 8.0 mm thickness, beveled with V-30º narrow gap. Torch is moved by a bug carrier (mechanized welding) and further the parameters are controlled as a function of angular position (automatized welding). Welding parameters are presented for filling the joint with two-passes (root and filling/capping passes). Parameters for the root pass were extracted from previous author´s work with weldments carried out in plates, but validated in this work for pipe welding. GMAW processes were assessed with short-circuit metal transfer in both conventional and derivative modes using different technologies (RMD, STT and CMT). After the parameter determination, mechanical testing was performed for welding qualification (uniaxial tension, face and root bending, nick break, Charpy V-notch impact, microhardness and macrograph). The initially obtained results for RMD and CMT were acceptable for all testing and, in a second moment, also for the STT. However, weld beads carried out by using the conventional process failed and revealed the existence of lack of fusion, which required further parametrization. Thus, a Parameter-Variation System for Girth Welding (SVP) was designed and built to allow varying the welding parameters as a function of angular position by using an inclinometer. The parameters were set for each of the three angular positions (flat, vertical downhill and overhead). By using such equipment and approach, the conventional process with parameter variation allowed reducing the welding time for joint accomplishment of the order of 38% for the root pass and 30% for the filling/capping pass.
Resumo:
Nowadays, the amount of customers using sites for shopping is greatly increasing, mainly due to the easiness and rapidity of this way of consumption. The sites, differently from physical stores, can make anything available to customers. In this context, Recommender Systems (RS) have become indispensable to help consumers to find products that may possibly pleasant or be useful to them. These systems often use techniques of Collaborating Filtering (CF), whose main underlying idea is that products are recommended to a given user based on purchase information and evaluations of past, by a group of users similar to the user who is requesting recommendation. One of the main challenges faced by such a technique is the need of the user to provide some information about her preferences on products in order to get further recommendations from the system. When there are items that do not have ratings or that possess quite few ratings available, the recommender system performs poorly. This problem is known as new item cold-start. In this paper, we propose to investigate in what extent information on visual attention can help to produce more accurate recommendation models. We present a new CF strategy, called IKB-MS, that uses visual attention to characterize images and alleviate the new item cold-start problem. In order to validate this strategy, we created a clothing image database and we use three algorithms well known for the extraction of visual attention these images. An extensive set of experiments shows that our approach is efficient and outperforms state-of-the-art CF RS.
Resumo:
The theoretical and experimental developments in the biomaterials area have been directly applied to different fields of Medicine (odontology, regenerative medicine and radiotherapy). These advances have focused both for diagnosing diseases such as for quantifying degrees of progression. From the perspective of these studies, biomaterials are being designed and manufactured for application in various areas of science, provided advances in diagnostic radiology, radiotherapy dosimetry and calibration of radiotherapy equipment. Develop a phantom from a biomaterial has become a great ally of medicine in the treat patients with oncological diseases, allowing better performance of the equipment in order to reduce damage to healthy tissue due to excessive exposure to radiation. This work used polymers: chitosan and gelatin, for making the polymeric structures and controlled for different types of production and processing, characterizing and evaluating the biopolymer by physical techniques (STL, SEM and DEI) and therefore analyze applicability as phantom mouse lung. It was possible to evaluate the morphology of biomaterials quantitatively by scanning electron microscopy associated with imaging technique. The relevance of this work focuses on developing a phantom from polymeric biomaterials that can act as phantom providing high image contrast when subjected to analysis. Thus, the choice of DEI technique is satisfactory since it is an imaging technique of X-ray high resolution. The images obtained by DEI have shown the details of the internal microstructure of the biomaterial produced which have ≈ 10 μm dimension. The phantoms had made density ranging from 0.08 a 0.13 g/cm3.