2 resultados para Recall-Precision Curves
em Universidade Federal de Uberlândia
Resumo:
The content-based image retrieval is important for various purposes like disease diagnoses from computerized tomography, for example. The relevance, social and economic of image retrieval systems has created the necessity of its improvement. Within this context, the content-based image retrieval systems are composed of two stages, the feature extraction and similarity measurement. The stage of similarity is still a challenge due to the wide variety of similarity measurement functions, which can be combined with the different techniques present in the recovery process and return results that aren’t always the most satisfactory. The most common functions used to measure the similarity are the Euclidean and Cosine, but some researchers have noted some limitations in these functions conventional proximity, in the step of search by similarity. For that reason, the Bregman divergences (Kullback Leibler and I-Generalized) have attracted the attention of researchers, due to its flexibility in the similarity analysis. Thus, the aim of this research was to conduct a comparative study over the use of Bregman divergences in relation the Euclidean and Cosine functions, in the step similarity of content-based image retrieval, checking the advantages and disadvantages of each function. For this, it was created a content-based image retrieval system in two stages: offline and online, using approaches BSM, FISM, BoVW and BoVW-SPM. With this system was created three groups of experiments using databases: Caltech101, Oxford and UK-bench. The performance of content-based image retrieval system using the different functions of similarity was tested through of evaluation measures: Mean Average Precision, normalized Discounted Cumulative Gain, precision at k, precision x recall. Finally, this study shows that the use of Bregman divergences (Kullback Leibler and Generalized) obtains better results than the Euclidean and Cosine measures with significant gains for content-based image retrieval.
Resumo:
This work's objective is the development of a methodology to represent an unknown soil through a stratified horizontal multilayer soil model, from which the engineer may carry out eletrical grounding projects with high precision. The methodology uses the experimental electrical apparent resistivity curve, obtained through measurements on the ground, using a 4-wire earth ground resistance tester kit, along with calculations involving the measured resistance. This curve is then compared with the theoretical electrical apparent resistivity curve, obtained through calculations over a horizontally strati ed soil, whose parameters are conjectured. This soil model parameters, such as the number of layers, in addition to the resistivity and the thickness of each layer, are optimized by Differential Evolution method, with enhanced performance through parallel computing, in order to both apparent resistivity curves get close enough, and it is possible to represent the unknown soil through the multilayer horizontal soil model fitted with optimized parameters. In order to assist the Differential Evolution method, in case of a stagnation during an arbitrary amount of generations, an optimization process unstuck methodology is proposed, to expand the search space and test new combinations, allowing the algorithm to nd a better solution and/or leave the local minima. It is further proposed an error improvement methodology, in order to smooth the error peaks between the apparent resistivity curves, by giving opportunities for other more uniform solutions to excel, in order to improve the whole algorithm precision, minimizing the maximum error. Methodologies to verify the polynomial approximation of the soil characteristic function and the theoretical apparent resistivity calculations are also proposed by including middle points among the approximated ones in the verification. Finally, a statistical evaluation prodecure is presented, in order to enable the classication of soil samples. The soil stratification methodology is used in a control group, formed by horizontally stratified soils. By using statistical inference, one may calculate the amount of soils that, within an error margin, does not follow the horizontal multilayer model.