2 resultados para Materiais de revestimento

em Universidade Federal de Uberlândia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work are considered two bidimensional systems, with distints chacacteristcs and applicabilitys. Is studied the adsorption of transition metals (MT) Fe, Co, Mn and Ru in extended defects, formed by graphene grain boundaries. First in pristine graphene The hollow site of carbon hexagon, in pristine graphene, are the most stable for MT adsorption. The Dirac cone in eletronic structure of graphene was manteined with the presence of MT. For the considered grain boundaries the MT has a greater stability for absorption in the grain boundaries sites in comparison with pristine graphene. Through the energy barrier values, are observed diffusion chanels for MT localized on the grain boundaries. This diffusion chanels indicate a possible formation of nanolines of MT in graphene. For the first stage of the nanolines, ate observed a better stability for the system with greater MT concentration, due to MT-MT interactions. Also, due to the magnetic moment of the MT, the nanolines show a magnetization. For the most stable configurations the system are metallics, particularly for Fe the band structure indicates an anisotropic spin current. In a second study, are considereted the retention capacity for metallic contaminants Cd and Hg in clayminerals, kaolinite (KAO) and montmorillonite (MMT). Through the adsorption energies of contaminantes in the clayminerals, was observed a increase in stability with the increase of contaminants concentration, due to the interaction Cd-Cd and Hg-Hg. Also, was observed that KAO has a strong interaction beteween monolayers than MMT. In this sence, for the adsoption process of contaminantes in the natural form of KAO and MMT, the latter has a better retention capacity, due to the small net work for contaminant intercalation. However, when the modification of clayminerals, with molecules that increase the spacing between monolayers, exist a optimal condition, which the contaminant absorption are more stable in KAO system than in MMT. In the Langmuir adsorption model for the clayminerals in the optimal monolayer spacing, the retention capacity for Cd and Hg in KAO system are 21% greater than in MMT system. Also, for the X-ray Absorption Near Edge Spectroscopy (XANES) for the K edge of Cd and Hg, are found a positive shift of absorption edge with the decreasing of monolayer spacing. This result indicates a possible way to determine the concentration of adsorbed contaminats in relation to unabsorbed ones, from the decomposition of experimental XANES in the obteined spectras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral route of administration is considered to be the most comfortable, safe and greater adaptation for patients. But, oral route presents some disadvantages such as drugs bioavailability and side effects on the stomach. Some technologies are studied to soften and/or resolve these problems, such as coating with polymeric films, which are able to protect the pharmaceutical form of the acid stomachic environment and to act in the drug release, and mucoadhesive systems, which allow the pharmaceutical form remains a greater time interval in the intestine, increasing the effectiveness of the drug. Cellulose triacetate (CTA) films were produced from cellulose extracted from sugar cane bagasse. The films were prepared with different morphologies (with and without water, acting as non-solvent) and concentrations (3, 6.5 and 10%) of CTA and characterized using scanning electron microscopy (SEM), water vapor permeability (WVP), puncture resistance (PR), enzymatic digestion (DE), and mucoadhesive force evaluation (MF). Microscopy showed the formation of symmetric and asymmetric morphologies. WVP data showed that more concentrated films have higher values for WVP; moreover, asymmetric films had higher values than symmetric films. PR measurements showed that symmetric membranes are more resistant than asymmetric ones. More concentrated films were also more puncture resistant, except for symmetric membranes with CTA concentrations of 6.5 and 10% that did not show significant differences. All of the films presented large mucoadhesive capacities independent of their morphology and CTA concentration. From the results of WVP and RP, a symmetric filme with 6.5% CTA showed better ability and mechanical resistance, therefore, was selected to serve as coating of gellan gum (GG) particles incorporating ketoprofen (KET), which was confirmed by SEM. The selected film presented low values in measurements of the swelling index (SI) and in a dissolution test (DT). TGA analysis showed that the CTA coating does not influence the thermal stability of the particles and there is no incompatibility evidence between CTA, GG and KET. Coated particles released 100% of the ketoprofen in 24 h, while uncoated particles released the same amount in 4 h. The results of this study highlight the potential of CTA in the development of new controlled oral delivery systems.