2 resultados para Método de elementos finitos

em Universidade Federal de Uberlândia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of using software based on numerical approximations for metal forming is given by the need to ensure process efficiency in order to get high quality products at lowest cost and shortest time. This study uses the theory of similitude in order to develop a technique capable of simulating the stamping process of a metal sheet, obtaining results close to the real values, with shorter processing times. The results are obtained through simulations performed in the finite element software STAMPACK®. This software uses the explicit integration method in time, which is usually applied to solve nonlinear problems involving contact, such as the metal forming processes. The technique was developed from a stamping model of a square box, simulated with four different scale factors, two higher and two smaller than the real scale. The technique was validated with a bending model of a welded plate, which had a high simulation time. The application of the technique allowed over 50% of decrease in the time of simulation. The results for the application of the scale technique for forming plates were satisfactory, showing good quantitative results related to the decrease of the total time of simulation. Finally, it is noted that the decrease in simulation time is only possible with the use of two related scales, the geometric and kinematic scale. The kinematic scale factors should be used with caution, because the high speeds can cause dynamic problems and could influence the results of the simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the creation of supersonic vehicles, during the Second World War, the engineers have given special attention to the interaction between the aerodynamic efforts and the structures of the aircrafts due to a highly destructive phenomenon called flutter in aeronautical panel. Flutter in aeronautical panels is a self-excited aeroelastic phenomenon, which can occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, affecting significantly the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility of reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, very few of them are adapted to deal with the problem of estimating the flutter speeds of viscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. In this context, two different model of viscoelastic material are developed and applied to the model of sandwich plate by using finite elements. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.