4 resultados para Luiz Eduardo Martins Ferreira

em Universidade Federal de Uberlândia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses two spectacles: “Moleque tão Grande Otelo” and “Água Suja”, in which both have had my participation as producer and actress. The spectacle “Moleque tão Grande Otelo” reveals the racial-ethnic questions that surrounds the play and permeates the artist’s life whose name is the same. The play deals how the actor Grande Otelo life events’ had implied in his art, the facts that marked his career and they are shown at the spectacle, the reason why to articulate: art, life, fantasy and reality. Aiming to unveil the actor, I refer it to my history as an actress and the roots’ similarity to Sebastião Bernardes de Souza Prata, who became Grande Otelo to the world. In the staging of “Água Suja”, we also expose familial and religious memories and experiences of a people that overflow faith in a real spectacle, which takes place every year, in August, in our region, more specifically in Romaria – MG. While creating “Água Suja”, we experienced the act of keeping a promise and believing in the saint’s miracle, thus this experience is told in the spectacle and investigated in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faced with an agribusiness expansion scenario and the increase in fertilizer consumption due to the exponential growth of the population, it is necessary to make better use of existing reserves, by obtaining products of better quality and in adequate quantities to meet demand national. In Tapira Mining Complex, Vale Fertilizantes, the phosphate concentrate is produced with content of 35.0% P2O5 from ore with content of about 8.0% P2O5, which are intended to supply Complex Industrial Uberaba and Araxá Minero Chemical Complex for the production of fertilizers. The industrial flotation step responsible for the recovery of P2O5 and hence the viability of the business is divided into the crumbly, grainy and ultrathin circuits, and, friable and granular concentrate comprise the conventional concentrated. Today only 14.7% of the mass which feeds the mill product becomes, the remainder being considered losses in the process, and the larger mass losses are located in the waste of flotation, representing 42.3%. From 2012 to 2014, the daily global mass recovery processing plants varied from 12.4 to 15.9% while the daily metallurgical recovery of P2O5 from 48.7 to 82.4%. By the degree of variability, it appears that the plant operated under different conditions. Seen this, this study aimed to analyze the influence of operational and process variables in P2O5 mass and metallurgical recoveries of industrial flotation circuits of grainy, crumbly and ultrathin. And besides was made an analysis of the effect of ore variables, as degrees, hardnesse and the ore front 02 percentage, in global recoveries of processing plant and the effect of dosages of reagents in the recoveries obtained from the bench flotation using the experimental design methodology. All work was performed using the historical database of Vale Fertilizantes of Tapira-MG, where all independent variables were dimensionless as the experimental range used. To make the statistical analysis it used the response surface technique and the values of the independent variables that maximize recoveries were found by canonical analysis. In the study of industrial flotation circuit crispy were obtained from 41.3% mass recovery and 91.3% metallurgical recovery P2O5, good values for the circuit, and the highest recoveries occur for solids concentration of the new flotation power between 45 and 50%, which values are assigned to the residence time of the pulp in cells and industrial flotation columns. The greater the number of ore heaps resumed on the higher the mass recovery, but in this scenario flotation becomes unstable because there is enormous weight variation in the feed. Higher recoveries are obtained for mass depressant dosage exceeding 120 g / t for synthetic collector dosage of 11.6%. In the study of industrial flotation circuit of the granulate were obtained 28.3% to 79.4% mass recovery and metallurgical recovery of P2O5 being considered good values for the circuit. Higher recoveries are obtained when the front ore 02 percentage is above 90%, because the ore of this front have more clear apatite. Likewise recoveries increase when the level of pulp rougher step is highest due to the high mass of circulating step receives loads. In the analysis of industrial flotation circuit of the ultrafine were obtained 23.95% of mass recovery, and the same is maximized to depressant dosage and the top collector 420 and 300 g / t, respectively. The analysis of the influence of variables ore, it was observed that higher recoveries are obtained for ores with P2O5 content above 8.0%, Fe2O3 content in the order of 28% forward and 02 of ore percentage of 83%. Hard ore percentage has strong influence on recoveries due to mass division in the circuit that is linked to this variable. However, the hard ore percentage that maximizes recoveries was very close to the design capacity of the processing plant, which is 20%. Finally, the study of the bench flotation, has noted that in friable and granular circuits the highest recoveries are achieved for a collector dosage exceeding 250 g / t and the simultaneous increase of collector dosage and synthetic collector percentage contributes to the increase recovery in the flotation, but this scenario is suitable to produce a concentrate poorer in terms of P2O5 content, showing that higher recovery is not always the ideal scenario. Thus, the results show the values of variables that provide higher recoveries in the flotation and hence lower losses in the waste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrocycloning operation has a goal to separate solid-liquid suspensions and liquid-liquid emulsions through the centrifugal force action. Hydrocyclones are equipment with reduced size and used in both clarification and thickening. This device is used in many areas, like petrochemical and minerals process, and accumulate advantages like versatility and low cost of maintenance. However, the demand to improve the process and to reduce the costs has motivated several studies of equipment optimization. The filtering hydrocyclone is a non-conventional equipment developed at FEQUI/UFU with objective to improve the hydrocycloning separation efficiency. The purpose of this study is to evaluate the operating conditions of feed concentration and underflow diameter on the performance of a filtering geometry optimized to minimization of energy costs. The filtration effect was investigated through the comparison between the performance of the Optimized Filtering Hydrocyclone (HCOF) and the Optimized Concentrator Hydrocyclone (HCO). Because of the resemblance of hydrocyclones performance, the filtration did not represent significant effect on the performance of the HCOF. It was found that in this geometry the decrease of the variable underflow diameter was very favorable to thickening operation. The suspension concentration of quartzite at 1.0% of solids in volume was increased about 42 times when the 3 mm underflow diameter was used. The increase on the feed solid percentage was good for decreasing the energy spent, so that a minimum number of Euler of 730 was achieved at CVA = 10.0%v. However, a greater amount of solids in suspension leads to a lower efficiency of the equipment. Therefore, to minimize the underflow-to-throughput ratio and keep a high efficiency level, it is indicated to work with dilute suspension (CVA = 1.0%) and 3 mm underflow diameter (η = 67%). But if it is necessary to work with high feed concentration, the use of 5 mm underflow diameter provides a rise in the efficiency. The HCO hydrocyclone was compared to the traditional family of hydrocyclones Rietema and presented advantages like higher efficiency (34% higher in average) and lower energy costs (20% lower in average). Finally, the efficiency curves and project equation have been raised for the HCO hydrocyclone each with satisfactory adjust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mathematical modeling in the simulation of self-purification capacity in lotic environment is an important tool in the planning and management of hydric resources in hydrographic basin scale. It satisfactorily deals with the self-purification process when the coefficients of physical and biochemical processes are calibrated from monitorated water quality data, which was the main focus of this study. The present study was conducted to simulate the behavior of the parameters OD, BOD5, total phosphorus, E. coli, ammonia, nitrite, nitrate and the total metals cadmium, chromium, copper, lead and zinc in the Uberabinha’s lower course (with an approximate annual growth flow between 4-35 m3/s), in a stretch of 19 km downstream of the treated effluent release by the WWTP of the city. The modelings, on the present study, show the importance of constant water quality parameters monitoration over the water course, based on the comparison of the simulations from calibrated coefficients and coefficients obtained in the literature for the period of June until November 2015. After coefficients calibration, there were good adjustments between simulated and measured data for the parameters OD, BOD, Ptotal, ammonia and nitrate and unsatisfactory adjust for the parameters nitrite and E. coli. About the total metals, the adjustments were not satisfactory on the reservoir’s vicinity of the Small Hydropower Plant Martins, due the considerable increase of the bottom sediment in lentic region. The greatest scientific contribution of this study was to calibrate the decay coefficient K and the quantification of the release by the fund S of total metals in watercourse midsize WWTP pollutant load receptor, justified by the lack of studies in the literature about the subject. For the metals cadmium, chromium, copper, lead and zinc, the borderline for K and S calibrated were: 0.0 to 13.0 day-1 and 0.0 to 1.7 g/m3.day; 0.0 to 0.9 day-1 and 0.0 to 7.3 g/m3.day; 0.0 to 25.0 day-1 and 0.0 to 1.8 g/m3.day; 0.0 to 7.0 day-1 and 0.0 to 40.3 g/m3.day; 0.0 to 30.0 day-1 and 0.0 to 70.1 g/m3.day.