3 resultados para Indústria de alta tecnologia - Brasil
em Universidade Federal de Uberlândia
Resumo:
Between 2003 and 2014 Brazil has increased exports by 52%, increased the formal employment and paid employment by 19% and reduced multidimensional poverty by 42%. The purpose of this work is to test the hypothesis that there is a Brazilian Growth Virtuous Circle where these three variables would be connected in order to increase exports and reduce poverty through the salaries transfer of funds. The construction of the hypothesis is made for Export Industry through ideas Verdoorn, Kaldor and Thirlwall presenting the export industry as an engine of economic growth. To present employment acting directly on economic growth is used Wage Led Rowthorn approach. The Capability Approach of Amartya Sen is used to understand the Multidimensional Poverty. The hypothesis was tested using data from the National Household Survey and Aliceweb between 2003 and 2014 with the use of the Generalized Method of Moments and the generation of elasticities between export and employment, employment and poverty, and export and poverty.
Resumo:
In this work, the oxidation and mineralization of paracetamol, based in an advanced oxidative process promoted by heterogeneous photocatalysis, was evaluated. The action of two photocatalysts (titanium dioxide, and a composite based on the association between titanium dioxide and zinc phthalocyanine dye) was studied. First of all, experiments in laboratory scale were performed using as radiation font a 400 W high pressure mercury lamp. The mineralization of paracetamol, promoted by both photocatalysts, was evaluated working with 4L of solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. To find the best experimental conditions, the influence of hydrogen peroxide concentration and pH was evaluated for the reactions. The best results for the reactions in laboratory scale was obtained using 33,00 mg L-1 of hydrogen peroxide in natural pH (6,80). Under these conditions, 100% oxidation was reached in just 40 minutes of reaction using TiO2 P25, while the mineralization was 78%. Using the composite, the mineralization was 63% in 2 hours of reaction and a oxidation of almost 100% was reached after 60 minutes. A CPC reactor (compound parabolic concentrator) was employed in the expanded work scale, using the sun as irradiation source. In this case the experiments were performed using 50 L of aqueous solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. The assays were done at pH 3,00 and natural pH (6,80). The used concentration of hydrogen peroxide was 33,00 mg L-1, adopted after laboratory scale studies. The reaction at pH 3,00 shows to be more advantageous, since under natural pH (6,80), the use of deionized water was necessary to prepare the solutions, probably because the deleterious action of carbonate ions, known hydroxyl radical scavengers. Using solar irradiation, the reaction mediated by the composite was more efficient when compared with the assays under laboratory scale since the composite presents the advantage of promoting a better use of visible radiation. Under these conditions, the mineralization increased from 40% to 56% under pH 3,00. At natural pH the oxidation occurred more slowly and the mineralization decreased from 56% to 50%. Thus, the use of pH 3,00 will be more interesting in real scale applications, even if it is necessary the pH correction before the discard of the treated effluent to the environment.
Resumo:
The hydrocycloning operation has a goal to separate solid-liquid suspensions and liquid-liquid emulsions through the centrifugal force action. Hydrocyclones are equipment with reduced size and used in both clarification and thickening. This device is used in many areas, like petrochemical and minerals process, and accumulate advantages like versatility and low cost of maintenance. However, the demand to improve the process and to reduce the costs has motivated several studies of equipment optimization. The filtering hydrocyclone is a non-conventional equipment developed at FEQUI/UFU with objective to improve the hydrocycloning separation efficiency. The purpose of this study is to evaluate the operating conditions of feed concentration and underflow diameter on the performance of a filtering geometry optimized to minimization of energy costs. The filtration effect was investigated through the comparison between the performance of the Optimized Filtering Hydrocyclone (HCOF) and the Optimized Concentrator Hydrocyclone (HCO). Because of the resemblance of hydrocyclones performance, the filtration did not represent significant effect on the performance of the HCOF. It was found that in this geometry the decrease of the variable underflow diameter was very favorable to thickening operation. The suspension concentration of quartzite at 1.0% of solids in volume was increased about 42 times when the 3 mm underflow diameter was used. The increase on the feed solid percentage was good for decreasing the energy spent, so that a minimum number of Euler of 730 was achieved at CVA = 10.0%v. However, a greater amount of solids in suspension leads to a lower efficiency of the equipment. Therefore, to minimize the underflow-to-throughput ratio and keep a high efficiency level, it is indicated to work with dilute suspension (CVA = 1.0%) and 3 mm underflow diameter (η = 67%). But if it is necessary to work with high feed concentration, the use of 5 mm underflow diameter provides a rise in the efficiency. The HCO hydrocyclone was compared to the traditional family of hydrocyclones Rietema and presented advantages like higher efficiency (34% higher in average) and lower energy costs (20% lower in average). Finally, the efficiency curves and project equation have been raised for the HCO hydrocyclone each with satisfactory adjust.