2 resultados para Hydrologic Modeling Catchment and Runoff Computations
em Universidade Federal de Uberlândia
Resumo:
This study describes the development of a prototype to evaluate the potential of environments based on two-dimensional modeling and virtual reality as power substations learning objects into training environments from a central operation and control of power utility Cemig. Initially, there was an identification modeling features and cognitive processes in 2D and RV, from which it was possible to create frames that serve to guide the preparation of a checklist with assigning a metric weight for measuring cognitive potential learning in the study sites. From these contents twenty-four questions were prepared and each was assigned a weight that was used in the calculation of the metric; the questions were grouped into skill sets and similar cognitive processes called categories. Were then developed two distinct environments: the first, the prototype features an interactive checklist and your individual results. And, second, a system of data management environment for the configuration and editing of the prototype, and the observation and analysis of the survey results. For prototype validation, were invited to access the virtual checklist and answer it, five professionals linked to Cemig's training area. The results confirmed the validity of this instrument application to assess the possible potential of modeling in 2D and RV as learning objects in power substations, as well as provide feedback to developers of virtual environments to improve the system.
Resumo:
This paper makes a comparative study of two Soft Single Switched Quadratic Boost Converters (SSS1 and SSS2) focused on Maximum Power Point Tracking (MPPT) of a PV array using Perturb and Observe (P&O) algorithm. The proposed converters maintain the static gain characteristics and dynamics of the original converter with the advantage of considerably reducing the switching losses and Electromagnetic Interference (EMI). It is displayed the input voltage Quadratic Boost converter modeling; qualitative and quantitative analysis of soft switching converters, defining the operation principles, main waveforms, time intervals and the state variables in each operation steps, phase planes of resonant elements, static voltage gain expressions, analysis of voltage and current efforts in semiconductors and the operational curves at 200 W to 800 W. There are presented project of PI, PID and PID + Notch compensators for MPPT closed-loop system and resonant elements design. In order to analyze the operation of a complete photovoltaic system connected to the grid, it was chosen to simulate a three-phase inverter using the P-Q control theory of three-phase instantaneous power. Finally, the simulation results and experimental with the necessary comparative analysis of the proposed converters will be presented.