2 resultados para Híbridos
em Universidade Federal de Uberlândia
Desempenho agronômico, bromatológico e estabilidade fenotípica de sorgo silageiro em Uberlândia - MG
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is a good alternative to be used as silage, especially in places with water scarcity and high temperatures, due to their morphological and physiological characteristics. The appropriate management, as the ideal seeding time, interferes both productivity and the quality of silage. The work was conducted with the objective of evaluating the agronomic and bromatological performance of varieties and hybrids of silage sorghum and their phenotypic stability in two seasons, season and off-season, in the city of Uberlândia, Minas Gerais. The experiments were performed at Capim Branco Experimental Farm of Federal University of Uberlândia (UFU), located in the referred city. There were two sowing dates in the same experimental area, off-season (March to June 2014) and season (November 2014 to March 2015), and the varieties and hybrids were evaluated in both situations. The design was a randomized block with 25 treatments (hybrids and varieties of sorghum) and three replications. Agronomical and bromatological data were subjected to an analysis of variance; averages were grouped by Scott-Knott test at 5% of probability, through Genes computer program; and to estimate the stability, it was opted for Annicchiarico method. The flowering of cultivars, dry matter productivity, plant height, Acid Detergent Fiber (ADF), Neutral Detergent Fiber (NDF) and Crude Protein (CP) are affected by the environment and the variety. Regarding productivity and quality of the fiber, SF11 variety was superior, independent of the rated environment. In relation to the performance stability of dry matter, the varieties SF15, SF11, SF25, PROG 134 IPA, 1141572, 1141570 and 1141562 were highlighted. For the stability of the quality of fibers (FDA and FDN), the variety 1141562 stood out. The environment reduces the expression of characters “days of flowering”, “plant height” and “productivity of dry matter of hybrids”. From the 25 hybrids analyzed for productivity and stability of dry matter performance, seven were highlighted, regardless of the rated environment: Volumax commercial hybrid and experiments 12F39006, 12F39007, 12F37014, 12F39014, 12F38009 and 12F02006.
Resumo:
Variable reluctance motors have been increasingly used as an alternative for variable speed and high speed drives in many industrial applications, due to many advantages like the simplicity of construction, robustness, and low cost. The most common applications in recent years are related to aeronautics, electric and hybrid vehicles and wind power generation. This paper explores the theory, operation, design procedures and analysis of a variable reluctance machine. An iterative design methodology is introduced and used to design a 1.25 kW prototype. For the analysis of the machine two methods are used, an analytical method and the finite element simulation. The results obtained by both methods are compared. The results of finite element simulation are used to determine the inductance profiles and torque of the prototype. The magnetic saturation is examined visually and numerically in four critical points of the machine. The data collected in the simulation allow the verification of design and operating limits for the prototype. Moreover, the behavior of the output quantities is analyzed (inductance, torque and magnetic saturation) by variation of physical dimensions of the motor. Finally, a multiobjective optimization using Differential Evolution algorithms and Genetic Algorithms for switched reluctance machine design is proposed. The optimized variables are rotor and stator polar arcs, and the goals are to maximize the average torque, the average torque per copper losses and the average torque per core volume. Finally, the initial design and optimized design are compared.