2 resultados para Good lives model

em Universidade Federal de Uberlândia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

lmage super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super­ resolution problems. lndeed, in arder to estimate an output image, we adopta mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already per- form well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in arder to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the- art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for recon- structing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In several areas of health professionals (pediatricians, nutritionists, orthopedists, endocrinologists, dentists, etc.) are used in the assessment of bone age to diagnose growth disorders in children. Through interviews with specialists in diagnostic imaging and research done in the literature, we identified the TW method - Tanner and Whitehouse as the most efficient. Even achieving better results than other methods, it is still not the most used, due to the complexity of their use. This work presents the possibility of automation of this method and therefore that its use more widespread. Also in this work, they are met two important steps in the evaluation of bone age, identification and classification of regions of interest. Even in the radiography in which the positioning of the hands were not suitable for TW method, the identification algorithm of the fingers showed good results. As the use AAM - Active Appearance Models showed good results in the identification of regions of interest even in radiographs with high contrast and brightness variation. It has been shown through appearance, good results in the classification of the epiphysis in their stages of development, being chosen the average epiphysis finger III (middle) to show the performance. The final results show an average percentage of 90% hit and misclassified, it was found that the error went away just one stage of the correct stage.