3 resultados para Geração espontânea

em Universidade Federal de Uberlândia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing demand in electricity and decrease forecast, increasingly, of fossil fuel reserves, as well as increasing environmental concern in the use of these have generated a concern about the quality of electricity generation, making it well welcome new investments in generation through alternative, clean and renewable sources. Distributed generation is one of the main solutions for the independent and selfsufficient generating systems, such as the sugarcane industry. This sector has grown considerably, contributing expressively in the production of electricity to the distribution networks. Faced with this situation, one of the main objectives of this study is to propose the implementation of an algorithm to detect islanding disturbances in the electrical system, characterized by situations of under- or overvoltage. The algorithm should also commonly quantize the time that the system was operating in these conditions, to check the possible consequences that will be caused in the electric power system. In order to achieve this it used the technique of wavelet multiresolution analysis (AMR) for detecting the generated disorders. The data obtained can be processed so as to be used for a possible predictive maintenance in the protection equipment of electrical network, since they are prone to damage on prolonged operation under abnormal conditions of frequency and voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Virtual Reality techniques applied in Electricity Environments provide a new supervisory control paradigm. The fact of existing a virtual environment (VE), geometrically similar to a real substation, reduces the difference of mental models built by field operators compared with those built by system center operation improving the communication. Beside this, those systems can be used as visualization interfaces for electricity system simulators, training systems for professors and undergraduate students, field operators and maintenance professionals. However, the development process of these systems is quite complex, combining several activities such as implementation, 3D modeling, virtual sceneries construction, usability assessment and management project techniques. In this context, this work present a GUI strategy to build field arrangements based on scene graphs, to reduce time in Virtual Electricity Substations Arrangement development. Through this, mistakes during the VE building can be avoided making this process more reliable. As an concept proof, all toolkits developed in this work were applied in the virtualization of the substations from a Brazilian power concessionary named CEMIG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the possibility of real-time interaction with three-dimensional environments through an advanced interface, Virtual Reality consist in the main technology of this work, used in the design of virtual environments based on real Hydroelectric Plants. Previous to the process of deploying a Virtual Reality System for operation, three-dimensional modeling and interactive scenes settings are very importante steps. However, due to its magnitude and complexity, power plants virtual environments generation, currently, presents high computing cost. This work aims to present a methodology to optimize the production process of virtual environments associated with real hydroelectric power plants. In partnership with electric utility CEMIG, several HPPs were used in the scope of this work. During the modeling of each one of them, the techiniques within the methodologie were addressed. After the evaluation of the computional techniques presented here, it was possible to confirm a reduction in the time required to deliver each hydroelectrical complex. Thus, this work presents the current scenario about development of virtual hydroelectric power plants and discusses the proposed methodology that seeks to optimize this process in the electricity generation sector.