1 resultado para FSS. Frequency Selective Surface. Microwave Circuits. Genetic Algorithm.GA
em Universidade Federal de Uberlândia
Filtro por publicador
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (45)
- Biblioteca de Teses e Dissertações da USP (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (48)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (18)
- CentAUR: Central Archive University of Reading - UK (42)
- Cochin University of Science & Technology (CUSAT), India (33)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (12)
- Digital Commons - Michigan Tech (9)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (61)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (31)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- RDBU - Repositório Digital da Biblioteca da Unisinos (8)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (3)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (142)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (21)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (41)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (7)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (24)
- Universidade Federal do Rio Grande do Norte (UFRN) (57)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (18)
- Université de Montréal, Canada (9)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (35)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Variable reluctance motors have been increasingly used as an alternative for variable speed and high speed drives in many industrial applications, due to many advantages like the simplicity of construction, robustness, and low cost. The most common applications in recent years are related to aeronautics, electric and hybrid vehicles and wind power generation. This paper explores the theory, operation, design procedures and analysis of a variable reluctance machine. An iterative design methodology is introduced and used to design a 1.25 kW prototype. For the analysis of the machine two methods are used, an analytical method and the finite element simulation. The results obtained by both methods are compared. The results of finite element simulation are used to determine the inductance profiles and torque of the prototype. The magnetic saturation is examined visually and numerically in four critical points of the machine. The data collected in the simulation allow the verification of design and operating limits for the prototype. Moreover, the behavior of the output quantities is analyzed (inductance, torque and magnetic saturation) by variation of physical dimensions of the motor. Finally, a multiobjective optimization using Differential Evolution algorithms and Genetic Algorithms for switched reluctance machine design is proposed. The optimized variables are rotor and stator polar arcs, and the goals are to maximize the average torque, the average torque per copper losses and the average torque per core volume. Finally, the initial design and optimized design are compared.