2 resultados para Energias renováveis. Secador solar. Convecção forcada. Eficiência na secagem
em Universidade Federal de Uberlândia
Diagnóstico ambiental da área de influência do complexo sucroalcooleiro Usina Vale do São Simão Ltda
Resumo:
One of the most widespread renewable energy sources in Brazil is ethanol, from sugarcane, therefore, the sugar and alcohol sector is expanding, with positive impacts for the economy of the country. Sugar cane was introduced in Brazil as a crop during its colonization, for the production of sugar, and put the country in the global scenario. The expansion of this crop occurred in the seventies, to reduce the reliance in fossil energy sources and to stimulate the development of the agricultural activity. Thus, the federal government has promoted the sugar cane crop and the production of ethanol as a fuel. However, it is important to minimize possible impacts that the crop may cause to the environment. Sugar cane has expanded in the frontiers of the mesoregion of Triângulo Mineiro and Alto Paranaíba-MG, and, in this perspective, the agroindustrial complex known as Companhia Energética Vale do São Simão Ltda., with the Mill located in the county of Santa Vitória, Minas Gerais, was adopted to evaluate the environmental impacts caused by the sugarcane in the area of influence of the mill. The mill has a polygonal area corresponding to 53,525.20 hectares, and for its establishment a Study and Report of Environmental Impacts (EIA/RIMA) was presented, as required as an environment protection instrument by the Environment National Policy (Law nº 6.938/81), and detailed by the Resolution CONAMA nº 01/1986. These studies pointed that native vegetation fragments in the Area of Influence of the Mill, before its implantation, corresponded to approximately 20.7% of the area. Therefore, this study evaluated the impacts of the installation of Usina Vale do São Simão, between 2007 and 2012, determining its reflex on the environmental regularization of the farms, and the vegetation fragments existing in the area, in the recovery and recomposition of areas defined as Legal Reserve and Permanent Preservation. Previous studies of the area were analyzed, soil use and occupation was mapped for the years 2007 and 2012, and the areas of permanent preservation and native vegetation fragments were marked. In general, there was a decline in native vegetation coverage in the period, although it cannot be stated that such reduction was a direct effect of the milling activity. Therefore, the legal requirement of preserving such areas was not capable of bringing the positive effects of protection and recovery as demanded by the Law, highlighting that the current legislation was not enough to protect such areas.
Resumo:
In this work, the oxidation and mineralization of paracetamol, based in an advanced oxidative process promoted by heterogeneous photocatalysis, was evaluated. The action of two photocatalysts (titanium dioxide, and a composite based on the association between titanium dioxide and zinc phthalocyanine dye) was studied. First of all, experiments in laboratory scale were performed using as radiation font a 400 W high pressure mercury lamp. The mineralization of paracetamol, promoted by both photocatalysts, was evaluated working with 4L of solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. To find the best experimental conditions, the influence of hydrogen peroxide concentration and pH was evaluated for the reactions. The best results for the reactions in laboratory scale was obtained using 33,00 mg L-1 of hydrogen peroxide in natural pH (6,80). Under these conditions, 100% oxidation was reached in just 40 minutes of reaction using TiO2 P25, while the mineralization was 78%. Using the composite, the mineralization was 63% in 2 hours of reaction and a oxidation of almost 100% was reached after 60 minutes. A CPC reactor (compound parabolic concentrator) was employed in the expanded work scale, using the sun as irradiation source. In this case the experiments were performed using 50 L of aqueous solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. The assays were done at pH 3,00 and natural pH (6,80). The used concentration of hydrogen peroxide was 33,00 mg L-1, adopted after laboratory scale studies. The reaction at pH 3,00 shows to be more advantageous, since under natural pH (6,80), the use of deionized water was necessary to prepare the solutions, probably because the deleterious action of carbonate ions, known hydroxyl radical scavengers. Using solar irradiation, the reaction mediated by the composite was more efficient when compared with the assays under laboratory scale since the composite presents the advantage of promoting a better use of visible radiation. Under these conditions, the mineralization increased from 40% to 56% under pH 3,00. At natural pH the oxidation occurred more slowly and the mineralization decreased from 56% to 50%. Thus, the use of pH 3,00 will be more interesting in real scale applications, even if it is necessary the pH correction before the discard of the treated effluent to the environment.