4 resultados para Energias renováveis

em Universidade Federal de Uberlândia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most widespread renewable energy sources in Brazil is ethanol, from sugarcane, therefore, the sugar and alcohol sector is expanding, with positive impacts for the economy of the country. Sugar cane was introduced in Brazil as a crop during its colonization, for the production of sugar, and put the country in the global scenario. The expansion of this crop occurred in the seventies, to reduce the reliance in fossil energy sources and to stimulate the development of the agricultural activity. Thus, the federal government has promoted the sugar cane crop and the production of ethanol as a fuel. However, it is important to minimize possible impacts that the crop may cause to the environment. Sugar cane has expanded in the frontiers of the mesoregion of Triângulo Mineiro and Alto Paranaíba-MG, and, in this perspective, the agroindustrial complex known as Companhia Energética Vale do São Simão Ltda., with the Mill located in the county of Santa Vitória, Minas Gerais, was adopted to evaluate the environmental impacts caused by the sugarcane in the area of influence of the mill. The mill has a polygonal area corresponding to 53,525.20 hectares, and for its establishment a Study and Report of Environmental Impacts (EIA/RIMA) was presented, as required as an environment protection instrument by the Environment National Policy (Law nº 6.938/81), and detailed by the Resolution CONAMA nº 01/1986. These studies pointed that native vegetation fragments in the Area of Influence of the Mill, before its implantation, corresponded to approximately 20.7% of the area. Therefore, this study evaluated the impacts of the installation of Usina Vale do São Simão, between 2007 and 2012, determining its reflex on the environmental regularization of the farms, and the vegetation fragments existing in the area, in the recovery and recomposition of areas defined as Legal Reserve and Permanent Preservation. Previous studies of the area were analyzed, soil use and occupation was mapped for the years 2007 and 2012, and the areas of permanent preservation and native vegetation fragments were marked. In general, there was a decline in native vegetation coverage in the period, although it cannot be stated that such reduction was a direct effect of the milling activity. Therefore, the legal requirement of preserving such areas was not capable of bringing the positive effects of protection and recovery as demanded by the Law, highlighting that the current legislation was not enough to protect such areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human development requires a broad balance between ecological, social and economic factors in order to ensure its own sustainability. In this sense, the search for new sources of energy generation, with low deployment and operation costs, which cause the least possible impact to the environment, has been the focus of attention of all society segments. To do so, the reduction in exploration of fossil fuels and the encouragement of using renewable energy resources for distributed generation have proved interesting alternatives to the expansion of the energy matrix of various countries in the world. In this sense, the wind energy has acquired an increasingly significant role, presenting increasing rates of power grid penetration and highlighting technological innovations such as the use of permanent magnet synchronous generators (PMSG). In Brazil, this fact has also been noted and, as a result, the impact of the inclusion of this source in the distribution and sub-transmission power grid has been a major concern of utilities and agents connected to Brazilian electrical sector. Thus, it is relevant the development of appropriate computational tools that allow detailed predictive studies about the dynamic behavior of wind farms, either operating with isolated load, either connected to the main grid, taking also into account the implementation of control strategies for active/reactive power generation and the keeping of adequate levels of voltage and frequency. This work fits in this context since it comprises mathematical and computational developments of a complete wind energy conversion system (WECS) endowed with PMSG using time domain techniques of Alternative Transients Program (ATP), which prides itself a recognized reputation by scientific and academic communities as well as by electricity professionals in Brazil and elsewhere. The modeling procedures performed allowed the elaboration of blocks representing each of the elements of a real WECS, comprising the primary source (the wind), the wind turbine, the PMSG, the frequency converter, the step up transformer, the load composition and the power grid equivalent. Special attention is also given to the implementation of wind turbine control techniques, mainly the pitch control responsible for keeping the generator under the maximum power operation point, and the vector theory that aims at adjusting the active/reactive power flow between the wind turbine and the power grid. Several simulations are performed to investigate the dynamic behavior of the wind farm when subjected to different operating conditions and/or on the occurrence of wind intensity variations. The results have shown the effectiveness of both mathematical and computational modeling developed for the wind turbine and the associated controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work are considered two bidimensional systems, with distints chacacteristcs and applicabilitys. Is studied the adsorption of transition metals (MT) Fe, Co, Mn and Ru in extended defects, formed by graphene grain boundaries. First in pristine graphene The hollow site of carbon hexagon, in pristine graphene, are the most stable for MT adsorption. The Dirac cone in eletronic structure of graphene was manteined with the presence of MT. For the considered grain boundaries the MT has a greater stability for absorption in the grain boundaries sites in comparison with pristine graphene. Through the energy barrier values, are observed diffusion chanels for MT localized on the grain boundaries. This diffusion chanels indicate a possible formation of nanolines of MT in graphene. For the first stage of the nanolines, ate observed a better stability for the system with greater MT concentration, due to MT-MT interactions. Also, due to the magnetic moment of the MT, the nanolines show a magnetization. For the most stable configurations the system are metallics, particularly for Fe the band structure indicates an anisotropic spin current. In a second study, are considereted the retention capacity for metallic contaminants Cd and Hg in clayminerals, kaolinite (KAO) and montmorillonite (MMT). Through the adsorption energies of contaminantes in the clayminerals, was observed a increase in stability with the increase of contaminants concentration, due to the interaction Cd-Cd and Hg-Hg. Also, was observed that KAO has a strong interaction beteween monolayers than MMT. In this sence, for the adsoption process of contaminantes in the natural form of KAO and MMT, the latter has a better retention capacity, due to the small net work for contaminant intercalation. However, when the modification of clayminerals, with molecules that increase the spacing between monolayers, exist a optimal condition, which the contaminant absorption are more stable in KAO system than in MMT. In the Langmuir adsorption model for the clayminerals in the optimal monolayer spacing, the retention capacity for Cd and Hg in KAO system are 21% greater than in MMT system. Also, for the X-ray Absorption Near Edge Spectroscopy (XANES) for the K edge of Cd and Hg, are found a positive shift of absorption edge with the decreasing of monolayer spacing. This result indicates a possible way to determine the concentration of adsorbed contaminats in relation to unabsorbed ones, from the decomposition of experimental XANES in the obteined spectras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing demand in electricity and decrease forecast, increasingly, of fossil fuel reserves, as well as increasing environmental concern in the use of these have generated a concern about the quality of electricity generation, making it well welcome new investments in generation through alternative, clean and renewable sources. Distributed generation is one of the main solutions for the independent and selfsufficient generating systems, such as the sugarcane industry. This sector has grown considerably, contributing expressively in the production of electricity to the distribution networks. Faced with this situation, one of the main objectives of this study is to propose the implementation of an algorithm to detect islanding disturbances in the electrical system, characterized by situations of under- or overvoltage. The algorithm should also commonly quantize the time that the system was operating in these conditions, to check the possible consequences that will be caused in the electric power system. In order to achieve this it used the technique of wavelet multiresolution analysis (AMR) for detecting the generated disorders. The data obtained can be processed so as to be used for a possible predictive maintenance in the protection equipment of electrical network, since they are prone to damage on prolonged operation under abnormal conditions of frequency and voltage.