1 resultado para Computer and network security
em Universidade Federal de Uberlândia
Filtro por publicador
- Aberdeen University (70)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (37)
- Aston University Research Archive (43)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CentAUR: Central Archive University of Reading - UK (66)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (10)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (20)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (47)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (15)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (28)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (8)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (36)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (22)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (6)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- Scielo Saúde Pública - SP (6)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (41)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (11)
- Université de Lausanne, Switzerland (15)
- Université de Montréal, Canada (4)
- University of Michigan (35)
- University of Queensland eSpace - Australia (26)
- University of Southampton, United Kingdom (10)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Lung cancer is the most common of malignant tumors, with 1.59 million new cases worldwide in 2012. Early detection is the main factor to determine the survival of patients affected by this disease. Furthermore, the correct classification is important to define the most appropriate therapeutic approach as well as suggest the prognosis and the clinical disease evolution. Among the exams used to detect lung cancer, computed tomography have been the most indicated. However, CT images are naturally complex and even experts medical are subject to fault detection or classification. In order to assist the detection of malignant tumors, computer-aided diagnosis systems have been developed to aid reduce the amount of false positives biopsies. In this work it was developed an automatic classification system of pulmonary nodules on CT images by using Artificial Neural Networks. Morphological, texture and intensity attributes were extracted from lung nodules cut tomographic images using elliptical regions of interest that they were subsequently segmented by Otsu method. These features were selected through statistical tests that compare populations (T test of Student and U test of Mann-Whitney); from which it originated a ranking. The features after selected, were inserted in Artificial Neural Networks (backpropagation) to compose two types of classification; one to classify nodules in malignant and benign (network 1); and another to classify two types of malignancies (network 2); featuring a cascade classifier. The best networks were associated and its performance was measured by the area under the ROC curve, where the network 1 and network 2 achieved performance equal to 0.901 and 0.892 respectively.